
Simulink® Fixed Point™ 5
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Fixed Point™ User’s Guide

© COPYRIGHT 1995–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 1995 First Printing New for Version 1.0
April 1997 Second Printing Revised for MATLAB 5
January 1999 Third Printing Revised for MATLAB 5.3 (Release 11)
September 2000 Fourth Printing New for Version 3.0 (Release 12)
August 2001 Fifth Printing Minor revisions for Version 3.1 (Release 12.1)
November 2002 Sixth Printing Minor revisions for Version 4.0 (Release 13)
June 2004 Seventh Printing Revised for Version 5.0 (Release 14) (Renamed from

Fixed-Point Blockset)
October 2004 Online only Minor revisions for Version 5.0.1 (Release 14SP1)
March 2005 Online only Minor revisions for Version 5.1 (Release 14SP2)
September 2005 Online only Minor revisions for Version 5.1.2 (Release 14SP3)
March 2006 Online only Revised for Version 5.2 (Release 2006a)
May 2006 Online only Revised for Version 5.2.1 (Release 2006a+)
September 2006 Online only Revised for Version 5.3 (Release 2006b)
March 2007 Eighth Printing Revised for Version 5.4 (Release 2007a)
September 2007 Online only Revised for Version 5.5 (Release 2007b)
March 2008 Online only Revised for Version 5.6 (Release 2008a)

Contents

Getting Started

1
Product Overview . 1-2

What You Need to Get Started . 1-4
Installation . 1-4
Sharing Fixed-Point Models . 1-4
Demos . 1-5

Physical Quantities and Measurement Scales 1-8
Introduction . 1-8
Selecting a Measurement Scale . 1-9
Example: Selecting a Measurement Scale 1-11

Why Use Fixed-Point Hardware? . 1-16

Why Use the Simulink® Fixed Point™ Software? 1-18

The Development Cycle . 1-19

Simulink® Fixed Point™ Software Features 1-21
Configuring Blocks with Fixed-Point Output 1-21
Configuring Blocks with Fixed-Point Parameters 1-29
Passing Fixed-Point Data Between Simulink® Models and

the MATLAB® Software . 1-32
Additional Features and Capabilities 1-35

Example: Converting from Doubles to Fixed Point 1-37
About This Example . 1-37
Block Descriptions . 1-38
Simulation Results . 1-38

v

Data Types and Scaling

2
Overview . 2-2

Fixed-Point Numbers . 2-3
About Fixed-Point Numbers . 2-3
Signed Fixed-Point Numbers . 2-4
Binary Point Interpretation . 2-4
Scaling . 2-5
Quantization . 2-7
Range and Precision . 2-9
Constant Scaling for Best Precision 2-12
Fixed-Point Data Type and Scaling Notation 2-15

Floating-Point Numbers . 2-17
About Floating-Point Numbers . 2-17
Scientific Notation . 2-17
The IEEE® Format . 2-19
Range and Precision . 2-22
Exceptional Arithmetic . 2-24

Arithmetic Operations

3
Overview . 3-3

Limitations on Precision . 3-4
Introduction . 3-4
Rounding . 3-4
Padding with Trailing Zeros . 3-14
Example: Limitations on Precision and Errors 3-15
Example: Maximizing Precision . 3-15

Limitations on Range . 3-17
Introduction . 3-17
Saturation and Wrapping . 3-18
Guard Bits . 3-21

vi Contents

Example: Limitations on Range . 3-21

Recommendations for Arithmetic and Scaling 3-23
Introduction . 3-23
Addition . 3-24
Accumulation . 3-27
Multiplication . 3-27
Gain . 3-29
Division . 3-31
Summary . 3-33

Parameter and Signal Conversions 3-34
Introduction . 3-34
Parameter Conversions . 3-35
Signal Conversions . 3-36

Rules for Arithmetic Operations . 3-39
Introduction . 3-39
Computational Units . 3-39
Addition and Subtraction . 3-40
Multiplication . 3-45
Division . 3-52
Shifts . 3-54

Example: Conversions and Arithmetic Operations 3-56

Realization Structures

4
Overview . 4-2

Introduction . 4-2
Realizations and Data Types . 4-2

Targeting an Embedded Processor 4-4
Introduction . 4-4
Size Assumptions . 4-4
Operation Assumptions . 4-4
Design Rules . 4-5

vii

Canonical Forms . 4-7
Introduction . 4-7
Direct Form II . 4-8
Series Cascade Form . 4-11
Parallel Form . 4-14

Fixed-Point Advisor

5
Working With the Fixed-Point Advisor 5-2

Introduction to the Fixed-Point Advisor 5-2
Running the Fixed-Point Advisor . 5-2
Fixing a Task Failure . 5-3
Automatically Fixing Failures . 5-3
Batch Fixing Failures . 5-4

Tutorial: Converting a Model from Floating- to
Fixed-Point . 5-5
About This Tutorial . 5-5
Starting the Fixed-Point Advisor . 5-5
Prepare Model for Conversion . 5-6
Prepare for Data Typing and Scaling 5-15
Perform Data Typing and Scaling . 5-18
Prepare for Code Generation . 5-21

Fixed-Point Tool

6
Overview of the Fixed-Point Tool . 6-2

Introduction to the Fixed-Point Tool 6-2
Opening the Fixed-Point Tool . 6-2
Understanding the Interface . 6-3

Working with the Fixed-Point Tool 6-5
Fixed-Point Tool Workflow . 6-5
Proposing Scaling . 6-5
Reviewing Scaling Proposals . 6-6

viii Contents

Applying Scaling . 6-11

Introduction to the Tutorial . 6-12
Opening the Demo Model . 6-12
About the Demo Model . 6-13
Simulation Setup . 6-14
Idealized Feedback Design . 6-14
Digital Controller Realization . 6-15

Tutorial: Feedback Controller . 6-18
Before You Begin . 6-18
Initial Guess at Scaling . 6-19
Data Type Override . 6-20
Automatic Scaling . 6-24

Tutorial: Producing Lookup Table Data

7
Overview . 7-2

Worst-Case Error for a Lookup Table 7-3
What Is Worst-Case Error for a Lookup Table? 7-3
Example: Square Root Function . 7-3

Creating Lookup Tables for a Sine Function 7-6
Introduction . 7-6
Parameters for fixpt_look1_func_approx 7-6
Setting Function Parameters for the Lookup Table 7-8
Example: Using errmax with Unrestricted Spacing 7-8
Example: Using nptsmax with Unrestricted Spacing 7-12
Example: Using errmax with Even Spacing 7-14
Example: Using nptsmax with Even Spacing 7-15
Example: Using errmax with Power of Two Spacing 7-16
Example: Using nptsmax with Power of Two Spacing 7-18
Specifying Both errmax and nptsmax 7-19
Comparing the Examples . 7-20

Summary: Using the Lookup Table Functions 7-22

ix

Effect of Spacing on Speed, Error, and Memory
Usage . 7-23
Introduction . 7-23
Data ROM Required . 7-24
Determining Out-of-Range Inputs . 7-25
Determining Input Location . 7-25
Interpolation . 7-27
Conclusion . 7-29

Code Generation

8
Overview . 8-2

Code Generation Support . 8-3
Introduction . 8-3
Languages . 8-3
Storage Class of Variables . 8-3
Storage Class of Parameters . 8-4
Rounding Modes . 8-4
Overflow Handling . 8-4
Blocks . 8-4
Scaling . 8-5

Accelerating Fixed-Point Models . 8-6

Using External Mode or Rapid Simulation Target 8-8
Introduction . 8-8
External Mode . 8-8
Rapid Simulation Target . 8-9

Optimizing Your Generated Code 8-10
Introduction . 8-10
Restrict Data Type Word Lengths . 8-11
Avoid Fixed-Point Scalings with Bias 8-11
Wrap and Round to Floor or Simplest 8-11
Limit the Use of Custom Storage Classes 8-13
Limit the Use of Unevenly Spaced Lookup Tables 8-13

x Contents

Minimize the Variety of Similar Fixed-Point Utility
Functions . 8-14

Optimizing Your Generated Code with the Model
Advisor . 8-15
Introduction . 8-15
Optimize Lookup Table Data . 8-16
Reduce Cumbersome Multiplications 8-16
Optimize the Number of Multiply and Divide Operations . . 8-17
Reduce Multiplies and Divides with Nonzero Bias 8-18
Eliminate Mismatched Scaling . 8-18
Minimize Internal Conversion Issues 8-20
Use the Most Efficient Rounding . 8-22

Fixed-Point Advisor Reference

9
Fixed-Point Advisor . 9-2

Fixed-Point Advisor Overview . 9-3

Prepare Model for Conversion . 9-6
Prepare Model for Conversion Overview 9-7
Verify model simulation settings . 9-8
Address unsupported blocks . 9-9
Verify update diagram status . 9-10
Set up signal logging . 9-11
Create simulation reference data . 9-12
Verify hardware selection . 9-13
Verify Fixed-Point Conversion Guidelines Overview 9-14
Check model configuration data validity diagnostic

parameters settings . 9-15
Implement logic signals as Boolean data 9-16
Check for proper bus usage . 9-17

Prepare for Data Typing and Scaling 9-18
Prepare for Data Typing and Scaling Overview 9-19
Remove output data type inheritance 9-20
Relax input data type settings . 9-21
Verify Stateflow charts have strong data typing with

Simulink . 9-22

xi

Specify block minimum and maximum values 9-23

Perform Data Typing and Scaling 9-24
Perform Data Typing and Scaling Overview 9-25
Propose scaling for Inport blocks . 9-26
Propose scaling for Constant blocks 9-30
Propose scaling for blocks . 9-34
Resolve scaling conflicts . 9-39
Summarize data types . 9-41
Propose scaling for parameters . 9-42
Check for numeric errors . 9-45
Analyze logged signals . 9-46

Prepare for Code Generation . 9-47
Prepare for Code Generation Overview 9-48
Disable signal logging . 9-49
Identify blocks that generate expensive saturation and

rounding code . 9-50
Identify questionable fixed-point operations 9-51

Function Reference

10
Global Changes . 10-1

Tools . 10-1

xii Contents

Functions — Alphabetical List

11

Writing Fixed-Point S-Functions

A
Data Type Support . A-3

Supported Data Types . A-3
The Treatment of Integers . A-4
Data Type Override . A-4

Structure of the S-Function . A-6

Storage Containers . A-8
Introduction . A-8
Storage Containers in Simulation . A-8
Storage Containers in Code Generation A-12

Data Type IDs . A-15
The Assignment of Data Type IDs . A-15
Registering Data Types . A-16
Setting and Getting Data Types . A-18
Getting Information About Data Types A-19
Converting Data Types . A-21

Overflow Handling and Rounding Methods A-22
Tokens for Overflow Handling and Rounding Methods . . . A-22
Overflow Logging Structure . A-23

Creating MEX-Files . A-24
Introduction . A-24
MEX-Files on UNIX® . A-24
MEX-Files on Windows® . A-24

Fixed-Point S-Function Examples A-26
List of Fixed-Point S-Function Examples A-26
Getting the Input Port Data Type . A-27

xiii

Setting the Output Port Data Type A-29
Interpreting an Input Value . A-30
Writing an Output Value . A-32
Using the Input Data Type to Determine the Output Data

Type . A-34

API Functions — Alphabetical List A-35

Selected Bibliography

B

Glossary

Index

xiv Contents

1

Getting Started

Product Overview (p. 1-2) Describes the Simulink® Fixed
Point™ software

What You Need to Get Started
(p. 1-4)

Describes how to ensure that the
Simulink Fixed Point software is
installed, and introduces its demos

Physical Quantities and
Measurement Scales (p. 1-8)

Provides an overview of
measurement scales and
representing numbers

Why Use Fixed-Point Hardware?
(p. 1-16)

Discusses the limitations and
benefits of fixed-point hardware

Why Use the Simulink® Fixed
Point™ Software? (p. 1-18)

Describes the advantages of using
the Simulink Fixed Point software

The Development Cycle (p. 1-19) Provides an overview of the
development cycle for simulating
dynamic systems

Simulink® Fixed Point™ Software
Features (p. 1-21)

Introduces key features of the
Simulink Fixed Point software

Example: Converting from Doubles
to Fixed Point (p. 1-37)

Provides an example based on the
fxpdemo_dbl2fix demo, which
highlights many of the key features
of the Simulink Fixed Point software

1 Getting Started

Product Overview
The Simulink® Fixed Point™ software enables the intrinsic fixed-point
capabilities of the following products across the Simulink® product family:

• Simulink

• Stateflow®

• Signal Processing Blockset™

• Communications Blockset™

• Target Support Package™ TC2

• Target Support Package TC6

• Target Support Package IC1

• Target Support Package FM5

• Video and Image Processing Blockset™

The following products can be used to generate fixed-point code when used
with the Simulink Fixed Point software:

• Real-Time Workshop®

• Real-Time Workshop® Embedded Coder™

• Stateflow® Coder™

• xPC Target™

You can use the Simulink Fixed Point software with Simulink products to
simulate effects commonly encountered in fixed-point systems for applications
such as control systems and time-domain filtering. The Simulink Fixed Point
software includes these major features:

• Integer, fractional, and generalized fixed-point data types

- Unsigned and two’s complement formats

- Word sizes in simulation from 1 to 128 bits

1-2

Product Overview

• Floating-point data types

- IEEE-style singles and doubles

- A nonstandard IEEE-style data type, where the fraction can range from
1 to 52 bits and the exponent can range from 1 to 11 bits

• Methods for overflow handling, scaling, and rounding of fixed-point data
types

• Tools that facilitate

- Collection of minimum and maximum simulation values

- Optimization of scaling parameters

- Display of input and output signals

In addition, you can generate C code for execution on a fixed-point embedded
processor with the Real-Time Workshop product. The generated code uses
only integer types and automatically includes all operations, such as shifts,
needed to account for differences in fixed-point locations.

The Simulink Fixed Point software features listed above are all supported for
fixed-point Simulink blocks. Other products in the Simulink family with
fixed-point capabilities might support some or all of these features. To get
specific information about the fixed-point features supported by a particular
product, refer to the documentation for that product. For example,

• For information on fixed-point support in the Signal Processing Blockset
software, refer to “Working with Fixed-Point Data” in the Signal Processing
Blockset documentation.

• For information on fixed-point support in the Stateflow software, refer
to “Using Fixed-Point Data in Stateflow Charts” in the Stateflow
documentation.

1-3

1 Getting Started

What You Need to Get Started

In this section...

“Installation” on page 1-4

“Sharing Fixed-Point Models” on page 1-4

“Demos” on page 1-5

Installation
To determine if the Simulink® Fixed Point™ software is installed on your
system, type

ver

at the MATLAB® command line. When you enter this command, the MATLAB
Command Window displays information about the version of MATLAB
software you are running, including a list of installed add-on products and
their version numbers. Check the list to see if the Simulink Fixed Point
software appears.

For information about installing this product, see your platform-specific
MATLAB Installation Guide.

If you experience installation difficulties and have Web access, look for
the installation and license information at the MathWorks Web site
(http://www.mathworks.com/support).

Sharing Fixed-Point Models
You can edit a model containing fixed-point blocks without the Simulink Fixed
Point software. However, you must have a Simulink Fixed Point software
license to

• Update a Simulink® diagram (Ctrl+D) containing fixed-point data types

• Run a model containing fixed-point data types

• Generate code from a model containing fixed-point data types

• Log the minimum and maximum values produced by a simulation

1-4

http://www.mathworks.com/support

What You Need to Get Started

• Automatically scale the output of a model using the autoscaling tool

If you do not have the Simulink Fixed Point software, you can work with
a model containing Simulink blocks with fixed-point settings by doing the
following:

1 Access the Fixed-Point Tool from the model by selecting
Tools > Fixed-Point > Fixed-Point Tool.

2 Set the Logging mode parameter to Force off model wide.

3 Set the Data type override parameter to True doubles or True singles
model wide.

Note If a parameter in your model specifies a fi object, you can prevent
the checkout of a Fixed-Point Toolbox™ license by setting the fipref
DataTypeOverride property to TrueDoubles. See “Licensing” in the
Fixed-Point Toolbox User’s Guide for more information.

This procedure allows you to share fixed-point Simulink models among people
in your company who may or may not have the Simulink Fixed Point software.

Demos
To help you learn how to use the Simulink Fixed Point software, a collection
of demos is provided. You can explore specific features of the product by
changing the parameters of Simulink blocks with fixed-point support and
observing the effects of those changes.

The demos are divided into two groups: basic demos that illustrate the basic
functionality of the Simulink Fixed Point software, and advanced demos that
illustrate the functionality of systems built with fixed-point blocks. All demos
are located in the fxpdemos directory.

You can access Simulink Fixed Point demos from the Help browser Demos
pane (see “Demos in the Help Browser” in the MATLAB documentation), or by
typing at the MATLAB command line:

1-5

1 Getting Started

demo simulink 'Simulink Fixed Point'

Basic Simulink® Fixed Point™ Demos
The basic demos are listed in the following table.

Demo Name Description

Double to Fixed-Point Conversion Convert a double-precision value to a
fixed-point value.

Fixed-Point to Fixed-Point Conversion Convert a fixed-point value to another
fixed-point value.

Fixed-Point to Fixed-Point Inherited
Conversion

Convert a fixed-point value to an inherited
fixed-point value.

Fixed-Point Sine Add and multiply two fixed-point sine wave
signals.

Fixed-Point Filters Simulate implementations of a fixed-point
filter.

Scaling a Fixed-Point Control Design Simulate a fixed-point feedback design.

“Example: Converting from Doubles to Fixed Point” on page 1-37 discusses
the Double to Fixed-Point Conversion demo, while Chapter 6, “Fixed-Point
Tool” discusses the Scaling a Fixed-Point Control Design demo.

Advanced Simulink® Fixed Point™ Demos
The advanced demos are intended to show you how to build and test systems
suited to your particular needs. The output of these demos is compared to the
output of analogous built-in Simulink blocks with identical input.

The advanced demos are listed in the following table.

Demo Name Description

Fixed-Point Integrators Compare output from the Integrator
Trapezoidal, Integrator Backward, and
Integrator Forward blocks to output from the
Simulink Discrete Integrator block.

1-6

What You Need to Get Started

Demo Name Description

Fixed-Point Derivatives Compare output from the Derivative and
Derivative: Filtered realizations to output
from the derivatives built using the Simulink
Discrete Filter and Transfer Fcn blocks.

Fixed-Point Lead and Lag Filters Compare output from the Lead and Lag Filter
block to output from analogous filters built
using the Simulink Discrete Filter block.

Fixed-Point State Space Compare output from the State-Space
Realization to output from the analogous
built-in Simulink State-Space and Discrete
State-Space blocks.

Fixed-Point Function Approximation Compare the fixed-point lookup approximation
of a function with the ideal function.

Fixed-Point Direct Form Filter Display the implementation of a fixed-point
direct form filter constructed with Simulink
blocks.

Fixed-Point Parallel Form Filter Display the implementation of a fixed-point
parallel form filter constructed with Simulink
blocks.

Fixed-Point Series Cascade Form Filter Display the implementation of a fixed-point
series cascade form filter constructed with
Simulink blocks.

Fixed-Point S-Function Example: Querying
Properties

Demonstrate S-functions that probe signal
properties.

Fixed-Point S-Function Example: Arithmetic
Shift

Demonstrate an S-function that performs an
arithmetic shift.

Fixed-Point S-Function Example: Fixed-Point
Source

Demonstrate an S-function that generates a
fixed-point constant value.

Fixed-Point S-Function Example: Data Type
Propagation

Demonstrate an S-function that enforces data
types across multiple signals.

Fixed-Point S-Function Example: Product and
Sum

Demonstrate an S-function that computes a
fixed-point product and sum operation.

1-7

1 Getting Started

Physical Quantities and Measurement Scales

In this section...

“Introduction” on page 1-8

“Selecting a Measurement Scale” on page 1-9

“Example: Selecting a Measurement Scale” on page 1-11

Introduction
The decision to use fixed-point hardware is simply a choice to represent
numbers in a particular form. This representation often offers advantages
in terms of the power consumption, size, memory usage, speed, and cost of
the final product.

A measurement of a physical quantity can take many numerical forms. For
example, the boiling point of water is 100 degrees Celsius, 212 degrees
Fahrenheit, 373 kelvin, or 671.4 degrees Rankine. No matter what number is
given, the physical quantity is exactly the same. The numbers are different
because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange
of information. However, there are situations where it makes sense to create
and use unique nonstandard scales. These situations usually involve making
the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum
detail on a fixed size sheet of paper. A typical road atlas of the USA will show
each state on a two-page display. The scale of inches to miles will be unique
for most states. By using a large ratio of miles to inches, all of Texas can fit
on two pages. Using the same scale for Rhode Island would make poor use of
the page. Using a much smaller ratio of miles to inches would allow Rhode
Island to be shown with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar
to fitting a state map on a piece of paper. The map scale should allow all the
boundaries of the state to fit on the page. Similarly, the binary scale for a
measurement should allow the maximum and minimum possible values to
fit. The map scale should also make the most of the paper in order to get

1-8

Physical Quantities and Measurement Scales

maximum detail. Similarly, the binary scale for a measurement should make
the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility
advantages. However, there are times when it is worthwhile to break
convention and use a unique nonstandard scale. There are also occasions
when a mix of uniqueness and compatibility makes sense. See the sections
that follow for more information.

Selecting a Measurement Scale
Suppose that you want to make measurements of the temperature of liquid
water, and that you want to represent these measurements using 8-bit
unsigned integers. Fortunately, the temperature range of liquid water is
limited. No matter what scale you use, liquid water can only go from the
freezing point to the boiling point. Therefore, this is the range of temperatures
that you must capture using just the 256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For
example, the units for the integers could be Celsius. Hence, the integers 0 and
100 represent water at the freezing point and at the boiling point, respectively.
On the upside, this scale gives a trivial conversion from the integers to degrees
Celsius. On the downside, the numbers 101 to 255 are unused. By using this
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers
0 and 255 represent water at the freezing point and at the boiling point,
respectively. On the upside, this scale gives maximum precision since there
are 254 values between freezing and boiling instead of just 99. On the
downside, the units are roughly 0.3921568 degree Celsius per bit so the
conversion to Celsius requires division by 2.55, which is a relatively expensive
operation on most fixed-point processors.

A third approach is to use a “semistandard” scale. For example, the integers
0 and 200 could represent water at the freezing point and at the boiling
point, respectively. The units for this scale are 0.5 degrees Celsius per bit.
On the downside, this scale doesn’t use the numbers from 201 to 255, which
represents a waste of more than 21%. On the upside, this scale permits
relatively easy conversion to a standard scale. The conversion to Celsius
involves division by 2, which is a very easy shift operation on most processors.

1-9

1 Getting Started

Measurement Scales: Beyond Multiplication
One of the key operations in converting from one scale to another is
multiplication. The preceding case study gave three examples of conversions
from a quantized integer value Q to a real-world Celsius value V that involved
only multiplication:

Graphically, the conversion is a line with slope S, which must pass through
the origin. A line through the origin is called a purely linear conversion.
Restricting yourself to a purely linear conversion can be very wasteful and it
is often better to use the general equation of a line:

By adding a bias term B, you can obtain greater precision when quantizing
to a limited number of bits.

The general equation of a line gives a very useful conversion to a quantized
scale. However, like all quantization methods, the precision is limited and
errors can be introduced by the conversion. The general equation of a line
with quantization error is given by

If the quantized value Q is rounded to the nearest representable number, then

1-10

Physical Quantities and Measurement Scales

That is, the amount of quantization error is determined by both the number of
bits and by the scale. This scenario represents the best-case error. For other
rounding schemes, the error can be twice as large.

Example: Selecting a Measurement Scale
On typical electronically controlled internal combustion engines, the flow
of fuel is regulated to obtain the desired ratio of air to fuel in the cylinders
just prior to combustion. Therefore, knowledge of the current air flow rate
is required. Some manufacturers use sensors that directly measure air flow,
while other manufacturers calculate air flow from measurements of related
signals. The relationship of these variables is derived from the ideal gas
equation. The ideal gas equation involves division by air temperature. For
proper results, an absolute temperature scale such as kelvin or Rankine
must be used in the equation. However, quantization directly to an absolute
temperature scale would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a
typical engine, the radiator is designed to keep the block below the boiling
point of the cooling fluid. Assume a maximum of 225oF (380 K). As the
air flows through the intake manifold, it can be heated to this maximum
temperature. For a cold start in an extreme climate, the temperature can be
as low as -60oF (222 K). Therefore, using the absolute kelvin scale, the range
of interest is 222 K to 380 K.

The air temperature needs to be quantized for processing by the embedded
control system. Assuming an unrealistic quantization to 3-bit unsigned
numbers: 0,1,2,...,7, the purely linear conversion with maximum precision is

V Q= ⋅380 K
7.5 bit

The quantized conversion and range of interest are shown in the following
figure.

1-11

1 Getting Started

Notice that there are 7.5 possible quantization values. This is because only
half of the first bit corresponds to temperatures (real-world values) greater
than zero.

The quantization error is

− ≤ ≤25 33. K/bit 25.33 K/bitError

1-12

Physical Quantities and Measurement Scales

The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

As an alternative to the purely linear conversion, consider the general linear
conversion with maximum precision:

V Q= −⎛
⎝⎜

⎞
⎠⎟

⋅ + + ⋅ −⎛
⎝⎜

⎞
⎠⎟

380 222
8

222 0 5
380 222

8
 K K

 K
 K K

.

1-13

1 Getting Started

The quantized conversion and range of interest are shown in the following
figure.

The quantization error is

-9.875 K/bit 9.875 K/bit≤ ≤Error

which is approximately 2.5 times smaller than the error associated with the
purely linear conversion.

1-14

Physical Quantities and Measurement Scales

The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

Clearly, the general linear scale gives much better precision than the purely
linear scale over the range of interest.

1-15

1 Getting Started

Why Use Fixed-Point Hardware?
Digital hardware is becoming the primary means by which control systems
and signal processing filters are implemented. Digital hardware can be
classified as either off-the-shelf hardware (for example, microcontrollers,
microprocessors, general-purpose processors, and digital signal processors)
or custom hardware. Within these two types of hardware, there are many
architecture designs. These designs range from systems with a single
instruction, single data stream processing unit to systems with multiple
instruction, multiple data stream processing units.

Within digital hardware, numbers are represented as either fixed-point or
floating-point data types. For both these data types, word sizes are fixed at
a set number of bits. However, the dynamic range of fixed-point values is
much less than floating-point values with equivalent word sizes. Therefore,
in order to avoid overflow or unreasonable quantization errors, fixed-point
values must be scaled. Since floating-point processors can greatly simplify the
real-time implementation of a control law or digital filter, and floating-point
numbers can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

• Size and Power Consumption — The logic circuits of fixed-point
hardware are much less complicated than those of floating-point hardware.
This means that the fixed-point chip size is smaller with less power
consumption when compared with floating-point hardware. For example,
consider a portable telephone where one of the product design goals is to
make it as portable (small and light) as possible. If one of today’s high-end
floating-point, general-purpose processors is used, a large heat sink and
battery would also be needed, resulting in a costly, large, and heavy
portable phone.

• Memory Usage and Speed — In general fixed-point calculations require
less memory and less processor time to perform.

• Cost — Fixed-point hardware is more cost effective where price/cost is
an important consideration. When digital hardware is used in a product,
especially mass-produced products, fixed-point hardware costs much less
than floating-point hardware and can result in significant savings.

After making the decision to use fixed-point hardware, the next step is to
choose a method for implementing the dynamic system (for example, control

1-16

Why Use Fixed-Point Hardware?

system or digital filter). Floating-point software emulation libraries are
generally ruled out because of timing or memory size constraints. Therefore,
you are left with fixed-point math where binary integer values are scaled.

1-17

1 Getting Started

Why Use the Simulink® Fixed Point™ Software?
The Simulink® Fixed Point™ software allows you to efficiently design
control systems and digital filters that you will implement using fixed-point
arithmetic. With the Simulink Fixed Point software, you can construct
Simulink® and Stateflow® models that contain detailed fixed-point information
about your systems. You can then perform bit-true simulations with the
models to observe the effects of limited range and precision on your designs.

You can configure the Fixed-Point Tool to automatically log the overflows,
saturations, and signal extremes of your simulations. You can also use it to
automate scaling decisions and to compare your fixed-point implementations
against idealized, floating-point benchmarks.

You can use the Simulink Fixed Point software with the Real-Time
Workshop® product to automatically generate efficient, integer-only C code
representations of your designs. You can use this C code in a production target
or for rapid prototyping. You can also use the Simulink Fixed Point software
with the Real-Time Workshop® Embedded Coder™ product to generate
real-time C code for use on an integer production, embedded target.

1-18

The Development Cycle

The Development Cycle
The Simulink® Fixed Point™ software provides tools that aid in the
development and testing of fixed-point dynamic systems. You directly
design dynamic system models in the Simulink® software that are ready for
implementation on fixed-point hardware. The development cycle is illustrated
below.

1-19

1 Getting Started

Using the MATLAB®, Simulink, and Simulink Fixed Point software, you
follow these steps of the development cycle:

1 Model the system (plant or signal source) within the Simulink software
using double-precision numbers. Typically, the model will contain nonlinear
elements.

2 Design and simulate a fixed-point dynamic system (for example, a control
system or digital filter) with fixed-point Simulink blocks that meets the
design, performance, and other constraints.

3 Analyze the results and go back to step 1 if needed.

When you have met the design requirements, you can use the model as a
specification for creating production code using the Real-Time Workshop®

product.

The above steps interact strongly. In steps 1 and 2, there is a significant
amount of freedom to select different solutions. Generally, you fine-tune the
model based upon feedback from the results of the current implementation
(step 3). There is no specific modeling approach. For example, you may obtain
models from first principles such as equations of motion, or from a frequency
response such as a sine sweep. There are many controllers that meet the
same frequency-domain or time-domain specifications. Additionally, for each
controller there are an infinite number of realizations.

The Simulink Fixed Point software helps expedite the design cycle by allowing
you to simulate the effects of various fixed-point controller and digital filter
structures.

1-20

Simulink® Fixed Point™ Software Features

Simulink® Fixed Point™ Software Features

In this section...

“Configuring Blocks with Fixed-Point Output” on page 1-21

“Configuring Blocks with Fixed-Point Parameters” on page 1-29

“Passing Fixed-Point Data Between Simulink® Models and the MATLAB®

Software” on page 1-32

“Additional Features and Capabilities” on page 1-35

Configuring Blocks with Fixed-Point Output
You can create a fixed-point model by configuring Simulink® blocks to output
fixed-point signals. Simulink blocks that support fixed-point output provide
parameters that allow you to specify whether a block should output fixed-point
signals and, if so, the size, scaling, and other attributes of the fixed-point
output. These parameters typically appear on the Signal Attributes pane
of the block’s parameter dialog box.

1-21

1 Getting Started

The following sections explain how to use these parameters to configure a
block for fixed-point output.

• “Specifying the Output Data Type and Scaling” on page 1-22

• “Specifying Fixed-Point Data Types with the Data Type Assistant” on page
1-25

• “Rounding” on page 1-27

• “Overflow Handling” on page 1-28

• “Locking the Output Scaling” on page 1-28

• “Real-World Values Versus Stored Integer Values” on page 1-28

Specifying the Output Data Type and Scaling
Many Simulink blocks allow you to specify an output data type and
scaling using a parameter that appears on the block dialog box. This
parameter—typically named Output data type—provides a pull-down menu
that lists the data types a particular block supports. In general, you can
specify the output data type as a rule that inherits a data type, a built-in
data type, an expression that evaluates to a data type, or a Simulink data
type object. See “Specifying Block Output Data Types” in Using Simulink
for more information.

The Simulink® Fixed Point™ software enables you to configure Simulink
blocks with:

• Fixed-point data types

Fixed-point data types are characterized by their word size in bits and by
their binary point—the means by which fixed-point values are scaled. See
“Fixed-Point Numbers” on page 2-3 for more information.

• Floating-point data types

Floating-point data types are characterized by their sign bit, fraction
(mantissa) field, and exponent field. See “Floating-Point Numbers” on page
2-17 for more information.

To configure blocks with Simulink Fixed Point data types, specify the data
type parameter on a block dialog box as an expression that evaluates to a

1-22

Simulink® Fixed Point™ Software Features

data type. Alternatively, you can use an assistant that simplifies the task of
entering data type expressions (see “Specifying Fixed-Point Data Types with
the Data Type Assistant” on page 1-25). The sections that follow describe
varieties of fixed-point and floating-point data types, and the corresponding
functions that you use to specify them.

Integers. You can specify unsigned and signed integers with the uint and
sint functions, respectively.

For example, to configure a 16-bit unsigned integer via the block dialog box,
specify the Output data type parameter as uint(16). To configure a 16-bit
signed integer, specify the Output data type parameter as sint(16).

For integer data types, the default binary point is assumed to lie to the right
of all bits.

Fractional Numbers. You can specify unsigned and signed fractional
numbers with the ufrac and sfrac functions, respectively.

For example, to configure the output as a 16-bit unsigned fractional number
via the block dialog box, specify the Output data type parameter to be
ufrac(16). To configure a 16-bit signed fractional number, specify Output
data type to be sfrac(16).

Fractional numbers are distinguished from integers by their default scaling.
Whereas signed and unsigned integer data types have a default binary point
to the right of all bits, unsigned fractional data types have a default binary
point to the left of all bits, while signed fractional data types have a default
binary point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which
act to guard against overflow. For example, sfrac(16,4) specifies a 16-bit
signed fractional number with 4 guard bits. The guard bits lie to the left
of the default binary point.

Generalized Fixed-Point Numbers. You can specify unsigned and
signed generalized fixed-point numbers with the ufix and sfix functions,
respectively.

1-23

1 Getting Started

For example, to configure the output as a 16-bit unsigned generalized
fixed-point number via the block dialog box, specify the Output data
type parameter to be ufix(16). To configure a 16-bit signed generalized
fixed-point number, specify Output data type to be sfix(16).

Generalized fixed-point numbers are distinguished from integers and
fractionals by the absence of a default scaling. For these data types, a block
typically inherits its scaling from another block.

Note Alternatively, you can use the fixdt function to create integer,
fractional, and generalized fixed-point objects. The fixdt function also allows
you to specify scaling for fixed-point data types.

Floating-Point Numbers. The Simulink Fixed Point software supports
single-precision and double-precision floating-point numbers as defined by
the IEEE® Standard 754-1985 for Binary Floating-Point Arithmetic. You can
specify floating-point numbers with the Simulink float function.

For example, to configure the output as a single-precision floating-point
number via the block dialog box, specify the Output data type parameter
as float('single'). To configure a double-precision floating-point number,
specify Output data type as float('double').

You can also specify a nonstandard floating-point number that mimics the
IEEE style. For this data type, the fraction (mantissa) can range from 1 to 52
bits and the exponent can range from 1 to 11 bits. For example, to configure a
nonstandard floating-point number having 32 total bits and 9 exponent bits,
specify Output data type as float(32,9).

Note These numbers are normalized with a hidden leading 1 for all
exponents except the smallest possible exponent. However, the largest
possible exponent might not be treated as a flag for Infs or NaNs.

1-24

Simulink® Fixed Point™ Software Features

Specifying Fixed-Point Data Types with the Data Type Assistant
The Data Type Assistant is an interactive graphical tool that simplifies
the task of specifying data types for Simulink blocks and data objects. The
assistant appears on block and object dialog boxes, adjacent to parameters
that provide data type control, such as the Output data type parameter. For
more information about accessing and interacting with the assistant, see
“Using the Data Type Assistant” in Using Simulink.

You can use the Data Type Assistant to specify a fixed-point data type.
When you select Fixed point in the Mode field, the assistant displays fields
for describing additional attributes of a fixed-point data type, as shown in
this example:

You can set the following fixed-point attributes:

1-25

1 Getting Started

Sign. Select whether you want the fixed-point data to be Signed or Unsigned.
Signed data can represent positive and negative quantities. Unsigned data
represents positive values only.

Word length. Specify the size (in bits) of the word that will hold the
quantized integer. Large word sizes represent large quantities with greater
precision than small word sizes. Fixed-point word sizes up to 128 bits are
supported for simulation.

Scaling. Specify the method for scaling your fixed-point data to avoid
overflow conditions and minimize quantization errors. You can select the
following scaling modes:

Scaling
Mode

Description

Binary
point

If you select this mode, the assistant displays the Fraction length field,
specifying the binary point location.

Binary points can be positive or negative integers. A positive integer moves the
binary point left of the rightmost bit by that amount. For example, an entry of 2
sets the binary point in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by that amount, as
in this example:

See “Binary-Point-Only Scaling” on page 2-6 for more information.

1-26

Simulink® Fixed Point™ Software Features

Scaling
Mode

Description

Slope and
bias

If you select this mode, the assistant displays fields for entering the Slope
and Bias.

• Slope can be any positive real number.

• Bias can be any real number.

See “[Slope Bias] Scaling” on page 2-7 for more information.

Best
precision

If you select this mode, the block scales a constant vector or matrix such that
the precision of its elements is maximized. This mode is available only for
particular blocks.

See “Constant Scaling for Best Precision” on page 2-12 for more information.

Calculate Best-Precision Scaling. The Simulink Fixed Point software
can automatically calculate “best-precision” values for both Binary point
and Slope and bias scaling, based on the values that you specify for other
parameters on the dialog box. To calculate best-precision-scaling values
automatically, enter values for the block’s Output minimum and Output
maximum parameters. Afterward, click the Calculate Best-Precision
Scaling button in the assistant.

Rounding
You specify how fixed-point numbers are rounded with the Round integer
calculations toward parameter. The following rounding modes are
supported:

• Zero — This mode rounds toward zero and is equivalent to the MATLAB®

fix function.

• Nearest — This mode rounds toward the nearest representable number,
with the exact midpoint rounded toward positive infinity. Rounding toward
nearest is equivalent to the Fixed-Point Toolbox™ nearest function.

• Ceiling — This mode rounds toward positive infinity and is equivalent to
the MATLAB ceil function.

1-27

1 Getting Started

• Floor — This mode rounds toward negative infinity and is equivalent to
the MATLAB floor function.

• Simplest — This mode automatically chooses between round toward floor
and round toward zero to produce generated code that is as efficient as
possible.

For more information about each of these rounding modes, see “Rounding”
on page 3-4.

Overflow Handling
You control how overflow conditions are handled for fixed-point operations
with the Saturate on integer overflow check box.

If this box is selected, overflows saturate to either the maximum or minimum
value represented by the data type. For example, an overflow associated with
a signed 8-bit integer can saturate to -128 or 127.

If this box is not selected, overflows wrap to the appropriate value that is
representable by the data type. For example, the number 130 does not fit in a
signed 8-bit integer, and would wrap to -126.

Locking the Output Scaling
If the output data type is a generalized fixed-point number, you have the
option of locking its scaling by selecting the Lock output scaling against
changes by the autoscaling tool check box.

When locked, the Fixed-Point Tool and automatic scaling script autofixexp
(see “Automatic Scaling” on page 1-36) do not change the output scaling.
Otherwise, the tool and autofixexp script are free to adjust the scaling.

Real-World Values Versus Stored Integer Values
You can configure Data Type Conversion blocks to treat signals as real-world
values or as stored integers with the Input and output to have equal
parameter.

1-28

Simulink® Fixed Point™ Software Features

The possible values are Real World Value (RWV) and Stored Integer
(SI).

In terms of the variables defined in “Scaling” on page 2-5, the real-world
value is given by V and the stored integer value is given by Q. You may want
to treat numbers as stored integer values if you are modeling hardware that
produces integers as output.

Configuring Blocks with Fixed-Point Parameters
Certain Simulink blocks allow you to specify fixed-point numbers as the
values of parameters used to compute the block’s output, e.g., the Gain
parameter of a Gain block.

1-29

1 Getting Started

Note S-functions and the Stateflow® Chart block do not support fixed-point
parameters.

You can specify a fixed-point parameter value either directly by setting the
value of the parameter to an expression that evaluates to a fi object, or
indirectly by setting the value of the parameter to an expression that refers to
a fixed-point Simulink.Parameter object.

• “Specifying Fixed-Point Values Directly” on page 1-30

• “Specifying Fixed-Point Values Via Parameter Objects” on page 1-31

Note Simulating or performing data type override on a model with fi objects
requires a Fixed-Point Toolbox software license. See “Sharing Fixed-Point
Models” on page 1-4 for more information.

Specifying Fixed-Point Values Directly
You can specify fixed-point values for block parameters using fi objects (see
“Working with fi Objects” in the Fixed-Point Toolbox User’s Guide for more
information). In the block dialog’s parameter field, simply enter the name of a
fi object or an expression that includes the fi constructor function.

For example, entering the expression

fi(3.3,true,8,3)

as the Constant value parameter for the Constant block specifies a signed
fixed-point value of 3.3, with a word length of 8 bits and a fraction length
of 3 bits.

1-30

Simulink® Fixed Point™ Software Features

Specifying Fixed-Point Values Via Parameter Objects
You can specify fixed-point parameter objects for block parameters using
instances of the Simulink.Parameter class. To create a fixed-point parameter
object, either specify a fi object as the parameter object’s Value property, or
specify the relevant fixed-point data type for the parameter object’s DataType
property.

For example, suppose you want to create a fixed-point constant in your model.
You could do this using a fixed-point parameter object and a Constant block as
follows:

1 Enter the following command at the MATLAB prompt to create an instance
of the Simulink.Parameter class:

my_fixpt_param = Simulink.Parameter

2 Specify either the name of a fi object or an expression that includes the fi
constructor function as the parameter object’s Value property:

my_fixpt_param.Value = fi(3.3,true,8,3)

Alternatively, you can set the parameter object’s Value and DataType
properties separately. In this case, specify the relevant fixed-point data
type using a Simulink.AliasType object, a Simulink.NumericType object,
or a fixdt expression. For example, the following commands independently
set the parameter object’s value and data type, using a fixdt expression as
the DataType string:

my_fixpt_param.Value = 3.3;
my_fixpt_param.DataType = 'fixdt(true,8,2^-3,0)'

3 Specify the parameter object as the value of a block’s parameter. For
example, my_fixpt_param specifies the Constant value parameter for the
Constant block in the following model:

Consequently, the Constant block outputs a signed fixed-point value of 3.3,
with a word length of 8 bits and a fraction length of 3 bits.

1-31

1 Getting Started

Passing Fixed-Point Data Between Simulink® Models
and the MATLAB® Software
You can read fixed-point data from the MATLAB software into your Simulink
models, and there are a number of ways in which you can log fixed-point
information from your models and simulations to the workspace.

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in structure
format with a Fixed-Point Toolbox fi object in the values field. In array
format, the From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the workspace as a fi object, select the
Log fixed-point data as a fi object check box on the To Workspace block
dialog. Otherwise, fixed-point data is converted to double and written to the
workspace as double.

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use
the From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

1-32

Simulink® Fixed Point™ Software Features

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

s.signals.values = a

s =

signals: [1x1 struct]

s.signals.dimensions = 2

s =

signals: [1x1 struct]

s.time = [0:10]'

s =

1-33

1 Getting Started

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter. In the model, the following parameters in the Solver
pane of the Configuration Parameters dialog box have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed-step size (fundamental sample time) — 1.0

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

1-34

Simulink® Fixed Point™ Software Features

0 -8.7041
13.4634 6.5938
14.5488 15.8296
2.2578 10.5117

-12.1089 -4.4707
-15.3428 -15.3428
-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488
6.5938 13.4634

-8.7041 0

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as Fixed-Point Toolbox fi objects. To enable
signal logging for a signal, select the Log signal data option in the signal’s
Signal Properties dialog box. For more information, refer to “Logging
Signals” in Using Simulink.

When you log signals from a referenced model or Stateflow chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next larger data storage container size.

Accessing Fixed-Point Block Data During Simulation
The Simulink software provides an application programming interface (API)
that enables programmatic access to block data, such as block inputs and
outputs, parameters, states, and work vectors, while a simulation is running.
You can use this interface to develop MATLAB programs capable of accessing
block data while a simulation is running or to access the data from the
MATLAB command line. Fixed-point signal information is returned to you via
this API as fi objects. For more information about the API, refer to “Accessing
Block Data During Simulation” in Using Simulink.

Additional Features and Capabilities
In addition to the features described in the previous sections, the Simulink
Fixed Point software provides you with:

1-35

1 Getting Started

• An automatic scaling tool

• Code generation capabilities

Automatic Scaling
You can use the autofixexp script to automatically change the scaling for
each Simulink block that has generalized fixed-point output and does not
have its scaling locked. The script uses the maximum and minimum values
logged during the last simulation run. The scaling is changed such that the
simulation range is covered and the precision is maximized.

As an alternative to, and extension of, the automatic scaling script, you can
use the Fixed-Point Tool. This interface allows you to easily control the
parameters associated with automatic scaling and display the simulation
results for a given model. To learn how to use the Fixed-Point Tool, refer to
Chapter 6, “Fixed-Point Tool”.

Code Generation
With the Real-Time Workshop® product, the Simulink Fixed Point software
can generate C code. The code generated from fixed-point blocks uses only
integer types and automatically includes all operations, such as shifts, needed
to account for differences in fixed-point locations.

You can use the generated code on embedded fixed-point processors or rapid
prototyping systems even if they contain a floating-point processor. The code
is structured so that key operations can be readily replaced by optimized
target-specific libraries that you supply. You can also use Target Language
Compiler to customize the generated code. Refer to Chapter 8, “Code
Generation” for more information about code generation using fixed-point
blocks.

1-36

Example: Converting from Doubles to Fixed Point

Example: Converting from Doubles to Fixed Point

In this section...

“About This Example” on page 1-37

“Block Descriptions” on page 1-38

“Simulation Results” on page 1-38

About This Example
The purpose of this example is to show you how to simulate a continuous
real-world doubles signal using a generalized fixed-point data type. Although
simple in design, the model gives you an opportunity to explore many of the
important features of the Simulink® Fixed Point™ software, including

• Data types

• Scaling

• Rounding

• Logging minimum and maximum simulation values to the workspace

• Overflow handling

The model used in this example is given by the fxpdemo_dbl2fix demo. You
can launch this demo by typing its name at the MATLAB® command line:

fxpdemo_dbl2fix

The model is shown in the following figure.

The sections that follow describe the model and its simulation results.

1-37

1 Getting Started

Block Descriptions
For purposes of this documentation example, the Signal Generator block is
configured to output a sine wave signal with an amplitude defined on the
interval [-5 5]. It always outputs double-precision numbers.

The function of the Data Type Conversion (Dbl-to-FixPt) block is to convert
the double-precision numbers from the Signal Generator block into one of the
Simulink Fixed Point data types. For simplicity, its output signal is limited to
5 bits in this example.

The function of the Data Type Conversion (FixPt-to-Dbl) block is to convert
one of the Simulink Fixed Point data types into a Simulink® data type. In this
example, it outputs double-precision numbers.

Simulation Results
The results of two simulation trials are given below. The first trial uses
binary-point-only scaling while the second trial uses [Slope Bias] scaling.

Trial 1: Binary-Point-Only Scaling
When using binary-point-only scaling, your goal is to find the optimal
power-of-two exponent E, as defined in “Scaling” on page 2-5. For this scaling
mode, the fractional slope F is set to 1 and no bias is required.

The Data Type Conversion (Dbl-to-FixPt) block is configured in this way:

• Output data type and scaling

The output data type is given by fixdt(1,5,2). This specifies a 5-bit,
signed, fixed-point number with scaling 2^-2, which puts the binary point
two places to the left of the rightmost bit. This gives a maximum value of
011.11 = 3.75, a minimum value of 100.00 = -4.00, and a precision of (1/2)2

= 0.25.

• Rounding

The rounding mode is given by Floor. This rounds the fixed-point result
toward negative infinity.

1-38

Example: Converting from Doubles to Fixed Point

• Overflows

Fixed-point values that overflow wrap to the appropriate value that is
representable by the data type.

The resulting real-world and fixed-point simulation results are shown in
the following figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

The simulation clearly demonstrates the quantization effects of fixed-point
arithmetic. The combination of using a 5-bit word with a precision of
(1/2)2 = 0.25 produces a discretized output that does not span the full range of
the input signal.

1-39

1 Getting Started

If you want to span the complete range of the input signal with 5 bits using
binary-point-only scaling, then your only option is to sacrifice precision.
Hence, the output scaling would be given by 2^-1, which puts the binary
point one place to the left of the rightmost bit. This scaling gives a maximum
value of 0111.1 = 7.5, a minimum value of 1000.0 = -8.0, and a precision of
(1/2)1 = 0.5.

Trial 2: [Slope Bias] Scaling
When using [Slope Bias] scaling, your goal is to find the optimal fractional
slope F and fixed power-of-two exponent E, as defined in “Scaling” on page 2-5.
No bias is required for this example because the sine wave is defined on the
interval [-5 5]. The Data Type Conversion (Dbl-to-FixPt) block configuration
is the same as that of the previous trial except for the scaling.

To arrive at a value for the slope, you can begin by assuming a fixed
power-of-two exponent of -2. In the previous trial, this value defined the
binary-point-only scaling and resulted in a precision of 0.25. To find the
fractional slope, you divide the maximum value of the sine wave by the
maximum value of the scaled 5-bit number. The result is 5.00/3.75 = 1.3333.
The slope (and precision) is 1.3333.(0.25) = 0.3333. You specify the [Slope
Bias] scaling as [0.3333 0] by entering the expression fixdt(1,5,0.3333,0)
as the value of the Output data type parameter.

Of course, you could have specified a fixed power-of-two exponent of -1 and a
corresponding fractional slope of 0.6667. Naturally, the resulting slope is the
same since E was reduced by one bit but F was increased by one bit. In this
case, the blockset would automatically store F as 1.3332 and E as -2 because
of the normalization condition of 1 ≤ F < 2.

The resulting real-world and fixed-point simulation results are shown in
the following figure.

1-40

Example: Converting from Doubles to Fixed Point

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

This somewhat cumbersome process used to find the slope is not really
necessary. All that is required is the range of the data you are simulating
and the size of the fixed-point word used in the simulation. In general, you
can achieve reasonable simulation results by selecting your scaling based on
the formula

where

1-41

1 Getting Started

• max is the maximum value to be simulated.

• min is the minimum value to be simulated.

• ws is the word size in bits.

• 2ws - 1 is the largest value of a word with size ws.

For this example, the formula produces a slope of 0.32258.

1-42

2

Data Types and Scaling

Overview (p. 2-2) Provides an overview of data types
and scaling in digital hardware

Fixed-Point Numbers (p. 2-3) Discusses the representation and
manipulation of fixed-point numbers,
both in general and in the Simulink®

Fixed Point™ software

Floating-Point Numbers (p. 2-17) Discusses the representation and
manipulation of floating-point
numbers

2 Data Types and Scaling

Overview
In digital hardware, numbers are stored in binary words. A binary word
is a fixed-length sequence of binary digits (1’s and 0’s). The way in which
hardware components or software functions interpret this sequence of 1’s
and 0’s is described by a data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits,
the binary point, and whether it is signed or unsigned. The binary point
is the means by which fixed-point values are scaled. With the Simulink®

Fixed Point™ software, fixed-point data types can be integers, fractionals, or
generalized fixed-point numbers. The main difference between these data
types is their default binary point.

Floating-point data types are characterized by a sign bit, a fraction (or
mantissa) field, and an exponent field. The blockset adheres to the IEEE®

Standard 754-1985 for Binary Floating-Point Arithmetic (referred to simply
as the IEEE Standard 754 throughout this guide) and supports singles,
doubles, and a nonstandard IEEE-style floating-point data type.

When choosing a data type, you must consider these factors:

• The numerical range of the result

• The precision required of the result

• The associated quantization error (i.e., the rounding mode)

• The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture
used, and the cost of development, among others.

With the Simulink Fixed Point software, you can explore the relationship
between data types, range, precision, and quantization error in the modeling
of dynamic digital systems. With the Real-Time Workshop® product, you can
generate production code based on that model.

2-2

Fixed-Point Numbers

Fixed-Point Numbers

In this section...

“About Fixed-Point Numbers” on page 2-3

“Signed Fixed-Point Numbers” on page 2-4

“Binary Point Interpretation” on page 2-4

“Scaling” on page 2-5

“Quantization” on page 2-7

“Range and Precision” on page 2-9

“Constant Scaling for Best Precision” on page 2-12

“Fixed-Point Data Type and Scaling Notation” on page 2-15

About Fixed-Point Numbers
Fixed-point numbers are stored in data types that are characterized by their
word size in bits, binary point, and whether they are signed or unsigned.
The Simulink® Fixed Point™ software supports integers, fractionals, and
generalized fixed-point numbers. The main difference among these data types
is their default binary point.

Note Fixed-point word sizes up to 128 bits are supported.

A common representation of a binary fixed-point number (either signed or
unsigned) is shown in the following figure.

where

2-3

2 Data Types and Scaling

• bi are the binary digits (bits).

• The size of the word in bits is given by ws.

• The most significant bit (MSB) is the leftmost bit, and is represented by
location bws – 1.

• The least significant bit (LSB) is the rightmost bit, and is represented by
location b0.

• The binary point is shown four places to the left of the LSB.

Signed Fixed-Point Numbers
Computer hardware typically represents the negation of a binary fixed-point
number in three different ways: sign/magnitude, one’s complement, and two’s
complement. Two’s complement is the preferred representation of signed
fixed-point numbers and is supported by the Simulink Fixed Point software.

Negation using two’s complement consists of a bit inversion (translation into
one’s complement) followed by the addition of a one. For example, the two’s
complement of 000101 is 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded
explicitly within the binary word; that is, there is no sign bit. Instead, the
sign information is implicitly defined within the computer architecture.

Binary Point Interpretation
The binary point is the means by which fixed-point numbers are scaled. It is
usually the software that determines the binary point. When performing basic
math functions such as addition or subtraction, the hardware uses the same
logic circuits regardless of the value of the scale factor. In essence, the logic
circuits have no knowledge of a scale factor. They are performing signed or
unsigned fixed-point binary algebra as if the binary point is to the right of b0.

Within the Simulink Fixed Point software, the main difference between
fixed-point data types is the default binary point. For integers and fractionals,
the binary point is fixed at the default value. For generalized fixed-point data
types, you must either explicitly specify the scaling by configuring dialog
box parameters, or inherit the scaling from another block. The sections that
follow describe the supported fixed-point data types.

2-4

Fixed-Point Numbers

Integers
The default binary point for signed and unsigned integer data types is
assumed to be just to the right of the LSB. You specify unsigned and signed
integers with the uint and sint functions, respectively.

Fractionals
The default binary point for unsigned fractional data types is just to the left
of the MSB, while for signed fractionals the binary point is just to the right
of the MSB. If you specify guard bits, then they lie to the left of the binary
point. You specify unsigned and signed fractional numbers with the ufrac
and sfrac functions, respectively.

Generalized Fixed-Point Numbers
For signed and unsigned generalized fixed-point numbers, there is no default
binary point. You specify unsigned and signed generalized fixed-point
numbers with the ufix and sfix functions, respectively.

Note You can also use the fixdt function to create integer, fractional, and
generalized fixed-point objects.

Scaling
The dynamic range of fixed-point numbers is much less than that of
floating-point numbers with equivalent word sizes. To avoid overflow
conditions and minimize quantization errors, fixed-point numbers must be
scaled.

With the Simulink Fixed Point software, you can select a fixed-point data
type whose scaling is defined by its default binary point, or you can select
a generalized fixed-point data type and choose an arbitrary linear scaling
that suits your needs. This section presents the scaling choices available for
generalized fixed-point data types.

2-5

2 Data Types and Scaling

A fixed-point number can be represented by a general [Slope Bias] encoding
scheme

where

• is an arbitrarily precise real-world value.

• is the approximate real-world value.

• Q is an integer that encodes V.

• S = F.2E is the slope.

• B is the bias.

The slope is partitioned into two components:

• 2E specifies the binary point. E is the fixed power-of-two exponent.

• F is the fractional slope. It is normalized such that .

Note S and B are constants and do not show up in the computer hardware
directly—only the quantization value Q is stored in computer memory.

The scaling modes available to you within this encoding scheme are described
in the sections that follow. For detailed information about how the supported
scaling modes effect fixed-point operations, refer to “Recommendations for
Arithmetic and Scaling” on page 3-23.

Binary-Point-Only Scaling
As the name implies, binary-point-only (or power-of-two) scaling involves
moving only the binary point within the generalized fixed-point word. The
advantage of this scaling mode is that the number of processor arithmetic
operations is minimized.

2-6

Fixed-Point Numbers

With binary-point-only scaling, the components of the general [Slope Bias]
formula have these values:

• F = 1

• S = 2E

• B = 0

That is, the scaling of the quantized real-world number is defined only by the
slope S, which is restricted to a power of two.

In the Simulink Fixed Point software, you specify binary-point-only scaling
with the syntax 2^-E where E is unrestricted. This creates a MATLAB®

structure with a bias B = 0 and a fractional slope F = 1.0. For example, the
syntax 2^-10 defines a scaling such that the binary point is at a location 10
places to the left of the least significant bit.

[Slope Bias] Scaling
When you scale by slope and bias, the slope S and bias B of the quantized
real-world number can take on any value. You specify scaling by slope and
bias with the syntax [slope bias], which creates a MATLAB structure with
the given slope and bias. For example, a [Slope Bias] scaling specified by
[5/9 10] defines a slope of 5/9 and a bias of 10. The slope must be a positive
number.

Quantization
The quantization Q of a real-world value V is represented by a weighted sum
of bits. Within the context of the general [Slope Bias] encoding scheme, the
value of an unsigned fixed-point quantity is given by

while the value of a signed fixed-point quantity is given by

2-7

2 Data Types and Scaling

where

• bi are binary digits, with bi = 1, 0.

• The word size in bits is given by ws, with ws = 1,2,3,...,128.

• S is given by F2E, where the scaling is unrestricted because the binary
point does not have to be contiguous with the word.

bi are called bit multipliers and 2i are called the weights.

Example: Fixed-Point Format
The formats for 8-bit signed and unsigned fixed-point values are shown in
the following figure.

Note that you cannot discern whether these numbers are signed or unsigned
data types merely by inspection since this information is not explicitly
encoded within the word.

The binary number 0011.0101 yields the same value for the unsigned and
two’s complement representation because the MSB = 0. Setting B = 0 and
using the appropriate weights, bit multipliers, and scaling, the value is

2-8

Fixed-Point Numbers

Conversely, the binary number 1011.0101 yields different values for the
unsigned and two’s complement representation since the MSB = 1.

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling,
the unsigned value is

while the two’s complement value is

Range and Precision
The range of a number gives the limits of the representation, while
the precision gives the distance between successive numbers in the

2-9

2 Data Types and Scaling

representation. The range and precision of a fixed-point number depend on
the length of the word and the scaling.

Range
The range of representable numbers for an unsigned and two’s complement
fixed-point number of size ws, scaling S, and bias B is illustrated in the
following figure.

For both the signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2ws.

For example, if the fixed-point data type is an integer with scaling defined as S
= 1 and B = 0, then the maximum unsigned value is 2ws - 1, because zero must
be represented. In two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2ws - 1- 1. Additionally, since there is
only one representation for zero, there must be an unequal number of positive
and negative numbers. This means there is a representation for -2ws - 1 but
not for 2ws - 1.

Precision
The precision (scaling) of integer and fractional data types is specified by the
default binary point. For generalized fixed-point data types, the scaling must
be explicitly defined as either [Slope Bias] or binary-point-only. In either case,
the precision is given by the slope.

Fixed-Point Data Type Parameters
The low limit, high limit, and default binary-point-only scaling for the
supported fixed-point data types discussed in “Binary Point Interpretation” on

2-10

Fixed-Point Numbers

page 2-4 are given in the following table. See “Limitations on Precision” on
page 3-4 and “Limitations on Range” on page 3-17 for more information.

Fixed-Point Data Type Range and Default Scaling

Name Data Type Low Limit High Limit
Default Scaling
(~Precision)

Integer uint 0 2ws - 1 1

sint -2ws - 1 2ws - 1 - 1 1

Fractional ufrac 0 1 - 2-ws 2-ws

sfrac -1 1 - 2-(ws - 1) 2-(ws - 1)

Generalized
Fixed-Point

ufix N/A N/A N/A

sfix N/A N/A N/A

Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only
Scaling
The precision, range of signed values, and range of unsigned values for an
8-bit generalized fixed-point data type with binary-point-only scaling follow.
Note that the first scaling value (21) represents a binary point that is not
contiguous with the word.

Scaling Precision

Range of Signed
Values (Low,
High)

Range of Unsigned
Values (Low, High)

21 2.0 -256, 254 0, 510

20 1.0 -128, 127 0, 255

2-1 0.5 -64, 63.5 0, 127.5

2-2 0.25 -32, 31.75 0, 63.75

2-3 0.125 -16, 15.875 0, 31.875

2-4 0.0625 -8, 7.9375 0, 15.9375

2-5 0.03125 -4, 3.96875 0, 7.96875

2-11

2 Data Types and Scaling

Scaling Precision

Range of Signed
Values (Low,
High)

Range of Unsigned
Values (Low, High)

2-6 0.015625 -2, 1.984375 0, 3.984375

2-7 0.0078125 -1, 0.9921875 0, 1.9921875

2-8 0.00390625 -0.5, 0.49609375 0, 0.99609375

Range of an 8-Bit Fixed-Point Data Type — [Slope Bias] Scaling
The precision and range of signed and unsigned values for an 8-bit fixed-point
data type using [Slope Bias] scaling follow. The slope starts at a value of
1.25 and the bias is 1.0 for all slopes. Note that the slope is the same as the
precision.

Bias Slope/Precision
Range of Signed
Values (low, high)

Range of Unsigned
Values (low, high)

1 1.25 -159, 159.75 1, 319.75

1 0.625 -79, 80.375 1, 160.375

1 0.3125 -39, 40.6875 1, 80.6875

1 0.15625 -19, 20.84375 1, 40.84375

1 0.078125 -9, 10.921875 1, 20.921875

1 0.0390625 -4, 5.9609375 1, 10.9609375

1 0.01953125 -1.5, 3.48046875 1, 5.98046875

1 0.009765625 -0.25, 2.240234375 1, 3.490234375

1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

Constant Scaling for Best Precision
The following fixed-point Simulink® blocks provide a mode for scaling
parameters whose values are constant vectors or matrices:

• Constant

• Discrete FIR Filter

2-12

Fixed-Point Numbers

• Gain

• Relay

• Repeating Sequence Stair

This scaling mode is based on binary-point-only scaling. Using this mode, you
can scale a constant vector or matrix such that a common binary point is
found based on the best precision for the largest value in the vector or matrix.

Constant scaling for best precision is available only for generalized fixed-point
data types. All other fixed-point data types use their default scaling. You can
use the Data Type Assistant (see “Using the Data Type Assistant” in Using
Simulink) on a block’s dialog box to enable the constant scaling mode:

1 Click the Show data type assistant button on a block dialog
box.

The Data Type Assistant appears.

2 In the Data Type Assistant, set the Mode field to Fixed point.

The Data Type Assistant displays additional options associated with
fixed-point data types.

3 Set the Scaling option to Best precision.

2-13

2 Data Types and Scaling

To understand how you might use this scaling mode, consider a 5-by-4 matrix
of doubles, M, defined as

3.3333e-005 3.3333e-006 3.3333e-007 3.3333e-008
3.3333e-004 3.3333e-005 3.3333e-006 3.3333e-007
3.3333e-003 3.3333e-004 3.3333e-005 3.3333e-006
3.3333e-002 3.3333e-003 3.3333e-004 3.3333e-005
3.3333e-001 3.3333e-002 3.3333e-003 3.3333e-004

Now suppose you specify M as the value of the Gain parameter for a Gain
block. The results of specifying your own scaling versus using the constant
scaling mode are described here:

• Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized
fixed-point data type with binary-point-only scaling of 2-7 (that is, the
binary point is located seven places to the left of the rightmost bit). With
this data format, M becomes

0 0 0 0
0 0 0 0
0 0 0 0
3.1250e-002 0 0 0
3.3594e-001 3.1250e-002 0 0

Note that many of the matrix elements are zero, and for the nonzero
entries, the scaled values differ from the original values. This is because a
double is converted to a binary word of fixed size and limited precision for
each element. The larger and more precise the conversion data type, the
more closely the scaled values match the original values.

• Constant Scaling for Best Precision

If M is scaled based on its largest matrix value, you obtain

0 0 0 0
0 0 0 0
2.9297e-003 0 0 0
3.3203e-002 2.9297e-003 0 0
3.3301e-001 3.3203e-002 2.9297e-003 0

2-14

Fixed-Point Numbers

The disadvantage of constant scaling is reduced precision resulting from
the use of a common binary point. However, the potential advantages of
using a common binary point include reduced code size and increased
processor speed.

Fixed-Point Data Type and Scaling Notation
The following table provides a key for various symbols that may appear in
Simulink products to indicate the data type and scaling of a fixed-point value.

Symbol Description

uint Unsigned integer fixed-point data type

sint Signed integer fixed-point data type

ufrac Unsigned fraction fixed-point data type

sfrac Signed fraction fixed-point data type

ufix Unsigned generalized fixed-point data type

sfix Signed generalized fixed-point data type

fltu Doubles override of an unsigned fixed-point data type

flts Doubles override of a signed fixed-point data type

B Bias

E 2^

e 10^

F Fractional slope

n Negative

p Decimal point

S Slope

Example: Port Data Type Display
For example, to display the data types of ports in your model, select
Port/Signal Displays > Port Data Types from the Simulink Format menu.

2-15

2 Data Types and Scaling

The port display for fixed-point signals consists of three parts: the data type,
the number of bits, and the scaling. These three parts reflect the block’s
Output data type parameter value or the data type and scaling that is
inherited from the driving block or through backpropagation.

The following model displays its port data types:

The data type display associated with the In1 block in the model indicates
that the output data type is sfix(16) (a signed, 16-bit, generalized fixed-point
number) with [Slope Bias] scaling of [0.2 10]. Note that this scaling is not
the block’s default scaling. The data type display associated with the In2
block indicates that the output data type is sfix(16) with binary-point-only
scaling of 2^-6.

2-16

Floating-Point Numbers

Floating-Point Numbers

In this section...

“About Floating-Point Numbers” on page 2-17

“Scientific Notation” on page 2-17

“The IEEE® Format” on page 2-19

“Range and Precision” on page 2-22

“Exceptional Arithmetic” on page 2-24

About Floating-Point Numbers
Fixed-point numbers are limited in that they cannot simultaneously represent
very large or very small numbers using a reasonable word size. This limitation
can be overcome by using scientific notation. With scientific notation, you can
dynamically place the binary point at a convenient location and use powers of
the binary to keep track of that location. Thus, you can represent a range of
very large and very small numbers with only a few digits.

You can represent any binary floating-point number in scientific notation
form as ±f × 2±e where f is the fraction (or mantissa), 2 is the radix or base
(binary in this case), and e is the exponent of the radix. The radix is always a
positive number, while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take
into account that the sign, exponent, and fraction are all encoded within the
same binary word. This results in complex logic circuits when compared with
the circuits for binary fixed-point operations.

The Simulink® Fixed Point™ software supports single-precision and
double-precision floating-point numbers as defined by the IEEE® Standard
754. Additionally, a nonstandard IEEE-style number is supported.

Scientific Notation
A direct analogy exists between scientific notation and radix point notation.
For example, scientific notation using five decimal digits for the fraction
would take the form

2-17

2 Data Types and Scaling

where p is an integer of unrestricted range. Radix point notation using five
bits for the fraction is the same except for the number base

where q is an integer of unrestricted range. The previous equation is valid
for both fixed- and floating-point numbers. For both these data types, the
fraction can be changed at any time by the processor. However, for fixed- point
numbers the exponent never changes, while for floating-point numbers the
exponent can be changed any time by the processor.

For fixed-point numbers, the exponent is fixed but there is no reason why
the binary point must be contiguous with the fraction. For example, a word
consisting of three unsigned bits is usually represented in scientific notation
in one of these four ways.

If the exponent were greater than 0 or less than -3, then the representation
would involve lots of zeros.

These extra zeros never change to ones, however, so they don’t show up in
the hardware. Furthermore, unlike floating-point exponents, a fixed-point

2-18

Floating-Point Numbers

exponent never shows up in the hardware, so fixed-point exponents are not
limited by a finite number of bits.

Note Restricting the binary point to being contiguous with the fraction is
unnecessary; the Simulink Fixed Point software allows you to extend the
binary point to any arbitrary location.

The IEEE® Format
The IEEE Standard 754 has been widely adopted, and is used with virtually
all floating-point processors and arithmetic coprocessors—with the notable
exception of many DSP floating-point processors.

Among other things, this standard specifies four floating-point number
formats, of which singles and doubles are the most widely used. Each format
contains three components: a sign bit, a fraction field, and an exponent field.
These components, as well as the specific formats for singles and doubles, are
discussed in the sections that follow.

The Sign Bit
While two’s complement is the preferred representation for signed fixed-point
numbers, IEEE floating-point numbers use a sign/magnitude representation,
where the sign bit is explicitly included in the word. Using this representation,
a sign bit of 0 represents a positive number and a sign bit of 1 represents a
negative number.

The Fraction Field
In general, floating-point numbers can be represented in many different ways
by shifting the number to the left or right of the binary point and decreasing
or increasing the exponent of the binary by a corresponding amount.

To simplify operations on these numbers, they are normalized in the IEEE
format. A normalized binary number has a fraction of the form 1.f where f has
a fixed size for a given data type. Since the leftmost fraction bit is always a 1,
it is unnecessary to store this bit and is therefore implicit (or hidden). Thus,
an n-bit fraction stores an n+1-bit number. The IEEE format also supports

2-19

2 Data Types and Scaling

denormalized numbers, which have a fraction of the form 0.f. Normalized and
denormalized formats are discussed in more detail in the next section.

The Exponent Field
In the IEEE format, exponent representations are biased. This means a fixed
value (the bias) is subtracted from the field to get the true exponent value. For
example, if the exponent field is 8 bits, then the numbers 0 through 255 are
represented, and there is a bias of 127. Note that some values of the exponent
are reserved for flagging Inf (infinity), NaN (not-a-number), and denormalized
numbers, so the true exponent values range from -126 to 127. See the sections
“Inf” on page 2-24 and “NaN” on page 2-25.

Single-Precision Format
The IEEE single-precision floating-point format is a 32-bit word divided into a
1-bit sign indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. A
representation of this format is given below.

The relationship between this format and the representation of real numbers
is given by

“Exceptional Arithmetic” on page 2-24 discusses denormalized values.

2-20

Floating-Point Numbers

Double-Precision Format
The IEEE double-precision floating-point format is a 64-bit word divided into
a 1-bit sign indicator s, an 11-bit biased exponent e, and a 52-bit fraction f. A
representation of this format is shown in the following figure.

The relationship between this format and the representation of real numbers
is given by

“Exceptional Arithmetic” on page 2-24 discusses denormalized values.

Nonstandard IEEE® Format
The Simulink Fixed Point software supports a nonstandard IEEE-style
floating-point data type. This data type adheres to the definitions and
formulas previously given for IEEE singles and doubles. You create
nonstandard floating-point numbers with the float function:

float(TotalBits,ExpBits)

TotalBits is the total word size and ExpBits is the size of the exponent field.
The size of the fraction field and the bias are calculated from these input
arguments. You can specify any number of exponent bits up to 11, and any
number of total bits such that the fraction field is no more than 53 bits.

When specifying a nonstandard format, you should remember that the
number of exponent bits largely determines the range of the result and the
number of fraction bits largely determines the precision of the result.

2-21

2 Data Types and Scaling

Note These numbers are normalized with a hidden leading one for all
exponents except the smallest possible exponent. However, the largest
possible exponent might not be treated as a flag for Inf or NaN.

Range and Precision
The range of a number gives the limits of the representation while
the precision gives the distance between successive numbers in the
representation. The range and precision of an IEEE floating-point number
depend on the specific format.

Range
The range of representable numbers for an IEEE floating-point number with f
bits allocated for the fraction, e bits allocated for the exponent, and the bias of
e given by bias = 2(e - 1) - 1 is given below.

where

• Normalized positive numbers are defined within the range 2(1 - bias) to
(2 - 2-f) · 2bias.

• Normalized negative numbers are defined within the range -2(1 - bias) to
-(2 - 2-f) · 2bias.

• Positive numbers greater than (2 - 2-f) · 2bias and negative numbers greater
than -(2 - 2-f) · 2bias are overflows.

• Positive numbers less than 2(1 - bias) and negative numbers less than -2(1 - bias)

are either underflows or denormalized numbers.

• Zero is given by a special bit pattern, where e = 0 and f = 0.

Overflows and underflows result from exceptional arithmetic conditions.
Floating-point numbers outside the defined range are always mapped to ±Inf.

2-22

Floating-Point Numbers

Note You can use the MATLAB® commands realmin and realmax to
determine the dynamic range of double-precision floating-point values for
your computer.

Precision
Because of a finite word size, a floating-point number is only an approximation
of the “true” value. Therefore, it is important to have an understanding of the
precision (or accuracy) of a floating-point result. In general, a value v with an
accuracy q is specified by v ± q. For IEEE floating-point numbers,

and

Thus, the precision is associated with the number of bits in the fraction field.

Note In the MATLAB software, floating-point relative accuracy is given by
the command eps, which returns the distance from 1.0 to the next larger
floating-point number. For a computer that supports the IEEE Standard 754,
eps = 2-52 or 2.22045 · 10-16.

Floating-Point Data Type Parameters
The high and low limits, exponent bias, and precision for the supported
floating-point data types are given in the following table.

Data Type Low Limit High Limit Exponent Bias Precision

Single 2-126 ≈ 10-38 2128 ≈ 3 · 1038 127 2-23 ≈ 10-7

Double 2-1022 ≈ 2 · 10-308 21024 ≈ 2 · 10308 1023 2-52 ≈ 10-16

Nonstandard 2(1 - bias) (2 - 2-f) · 2bias 2(e - 1) - 1 2-f

2-23

2 Data Types and Scaling

Because of the sign/magnitude representation of floating-point numbers,
there are two representations of zero, one positive and one negative. For both
representations e = 0 and 0.f = 0.0.

Exceptional Arithmetic
In addition to specifying a floating-point format, the IEEE Standard 754
specifies practices and procedures so that predictable results are produced
independently of the hardware platform. Specifically, denormalized numbers,
Inf, and NaN are defined to deal with exceptional arithmetic (underflow and
overflow).

If an underflow or overflow is handled as Inf or NaN, then significant
processor overhead is required to deal with this exception. Although the IEEE
Standard 754 specifies practices and procedures to deal with exceptional
arithmetic conditions in a consistent manner, microprocessor manufacturers
might handle these conditions in ways that depart from the standard. Some
of the alternative approaches, such as saturation and wrapping, are discussed
in Chapter 3, “Arithmetic Operations”.

Denormalized Numbers
Denormalized numbers are used to handle cases of exponent underflow. When
the exponent of the result is too small (i.e., a negative exponent with too large
a magnitude), the result is denormalized by right-shifting the fraction and
leaving the exponent at its minimum value. The use of denormalized numbers
is also referred to as gradual underflow. Without denormalized numbers, the
gap between the smallest representable nonzero number and zero is much
wider than the gap between the smallest representable nonzero number and
the next larger number. Gradual underflow fills that gap and reduces the
impact of exponent underflow to a level comparable with roundoff among the
normalized numbers. Thus, denormalized numbers provide extended range
for small numbers at the expense of precision.

Inf
Arithmetic involving Inf (infinity) is treated as the limiting case of real
arithmetic, with infinite values defined as those outside the range of

representable numbers, or . With the
exception of the special cases discussed below (NaN), any arithmetic operation

2-24

Floating-Point Numbers

involving Inf yields Inf. Inf is represented by the largest biased exponent
allowed by the format and a fraction of zero.

NaN
A NaN (not-a-number) is a symbolic entity encoded in floating-point format.
There are two types of NaN: signaling and quiet. A signaling NaN signals an
invalid operation exception. A quiet NaN propagates through almost every
arithmetic operation without signaling an exception. The following operations

result in a NaN: , , , , and .

Both types of NaN are represented by the largest biased exponent allowed by
the format and a fraction that is nonzero. The bit pattern for a quiet NaN is
given by 0.f where the most significant number in f must be a one, while the bit
pattern for a signaling NaN is given by 0.f where the most significant number
in f must be zero and at least one of the remaining numbers must be nonzero.

2-25

2 Data Types and Scaling

2-26

3

Arithmetic Operations

Overview (p. 3-3) Provides an overview of issues
that need to be considered when
performing fixed-point arithmetic
operations—overflow, quantization,
computational noise, and limit cycles

Limitations on Precision (p. 3-4) Discusses the limits placed on the
precision of fixed-point calculations,
and how they are handled in the
Simulink® software

Limitations on Range (p. 3-17) Discusses the limits placed on the
range of fixed-point calculations,
and how they are handled in the
Simulink software

Recommendations for Arithmetic
and Scaling (p. 3-23)

Recommends scaling in your
fixed-point design based on the
limitations of fixed-point arithmetic

Parameter and Signal Conversions
(p. 3-34)

Discusses the way the data types
of parameters and signals are
converted in Simulink simulations

3 Arithmetic Operations

Rules for Arithmetic Operations
(p. 3-39)

Describes the way arithmetic
operations are performed on inputs
and parameters in the Simulink
software

Example: Conversions and
Arithmetic Operations (p. 3-56)

Provides an example highlighting
the way the data types are converted
and arithmetic operations are
performed on inputs and parameters
in the Simulink software

3-2

Overview

Overview
When developing a dynamic system using floating-point arithmetic, you
generally don’t have to worry about numerical limitations since floating-point
data types have high precision and range. Conversely, when working with
fixed-point arithmetic, you must consider these factors when developing
dynamic systems:

• Overflow

Adding two sufficiently large negative or positive values can produce a
result that does not fit into the representation. This will have an adverse
effect on the control system.

• Quantization

Fixed-point values are rounded. Therefore, the output signal to the
plant and the input signal to the control system do not have the same
characteristics as the ideal discrete-time signal.

• Computational noise

The accumulated errors that result from the rounding of individual terms
within the realization introduce noise into the control signal.

• Limit cycles

In the ideal system, the output of a stable transfer function (digital filter)
approaches some constant for a constant input. With quantization, limit
cycles occur where the output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations
are performed using encoded fixed-point variables. It also provides
recommendations for encoding fixed-point variables such that simulations
and generated code are reasonably efficient.

3-3

3 Arithmetic Operations

Limitations on Precision

In this section...

“Introduction” on page 3-4

“Rounding” on page 3-4

“Padding with Trailing Zeros” on page 3-14

“Example: Limitations on Precision and Errors” on page 3-15

“Example: Maximizing Precision” on page 3-15

Introduction
Computer words consist of a finite numbers of bits. This means that the
binary encoding of variables is only an approximation of an arbitrarily precise
real-world value. Therefore, the limitations of the binary representation
automatically introduce limitations on the precision of the value. For a general
discussion of range and precision, refer to “Range and Precision” on page 2-9.

The precision of a fixed-point word depends on the word size and binary point
location. Extending the precision of a word can always be accomplished with
more bits, but you face practical limitations with this approach. Instead, you
must carefully select the data type, word size, and scaling such that numbers
are accurately represented. Rounding and padding with trailing zeros are
typical methods implemented on processors to deal with the precision of
binary words.

Rounding
The result of any operation on a fixed-point number is typically stored in a
register that is longer than the number’s original format. When the result is
put back into the original format, the extra bits must be disposed of. That is,
the result must be rounded. Rounding involves going from high precision to
lower precision and produces quantization errors and computational noise.

Fixed-point Simulink® blocks support five rounding modes, which are shown
in the expanded drop-down menu of the following dialog box.

3-4

Limitations on Precision

These rounding modes are discussed in the sections that follow.

Round Toward Zero
The simplest rounding mode computationally is when all digits beyond the
number required are dropped. This mode is referred to as rounding toward
zero, and it results in a number whose magnitude is always less than or equal
to the more precise original value. In the MATLAB® software, you can round
to zero using the fix function.

Rounding toward zero introduces a cumulative downward bias in the result
for positive numbers and a cumulative upward bias in the result for negative
numbers. That is, all positive numbers are rounded to smaller positive
numbers, while all negative numbers are rounded to smaller negative
numbers. Rounding toward zero is shown in the following figure.

3-5

3 Arithmetic Operations

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Zero

Positive numbers are rounded
to smaller positive numbers.

Negative numbers are rounded
to smaller negative numbers.

Example: Rounding to Zero Versus Truncation. Rounding to zero and
truncation or chopping are sometimes thought to mean the same thing.
However, the results produced by rounding to zero and truncation are
different for unsigned and two’s complement numbers.

To illustrate this point, consider rounding a 5-bit unsigned number to zero
by dropping (truncating) the two least significant bits. For example, the
unsigned number 100.01 = 4.25 is truncated to 100 = 4. Therefore, truncating
an unsigned number is equivalent to rounding to zero or rounding to floor.

3-6

Limitations on Precision

Now consider rounding a 5-bit two’s complement number by dropping the
two least significant bits. At first glance, you may think truncating a two’s
complement number is the same as rounding to zero. For example, dropping
the last two digits of -3.75 yields -3.00. However, digital hardware performing
two’s complement arithmetic yields a different result. Specifically, the number
100.01 = -3.75 truncates to 100 = -4, which is rounding to floor.

As you can see, rounding to zero for a two’s complement number is not the
same as truncation when the original value is negative. For this reason, the
ambiguous term “truncation” is not used in this guide, and four explicit
rounding modes are used instead.

Round Toward Nearest
When you round toward nearest, the number is rounded to the nearest
representable value. This mode has the smallest errors associated with it and
these errors are symmetric. As a result, rounding toward nearest is the most
useful approach for most applications.

In the Fixed-Point Toolbox™ software, you can round to nearest using the
nearest function. Rounding toward nearest is shown in the following figure.

3-7

3 Arithmetic Operations

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Nearest

All numbers are rounded to the
nearest representable number.

3-8

Limitations on Precision

Round Toward Ceiling
When you round toward ceiling, both positive and negative numbers are
rounded toward positive infinity. As a result, a positive cumulative bias
is introduced in the number.

In the MATLAB software, you can round to ceiling using the ceil function.
Rounding toward ceiling is shown in the following figure.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Ceiling

All numbers are rounded
toward positive infinity.

3-9

3 Arithmetic Operations

Round Toward Floor
When you round toward floor, both positive and negative numbers are rounded
to negative infinity. As a result, a negative cumulative bias is introduced in
the number.

In the MATLAB software, you can round to floor using the floor function.
Rounding toward floor is shown in the following figure.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Floor

All numbers are rounded
toward negative infinity.

Rounding toward ceiling and rounding toward floor are sometimes useful for
diagnostic purposes. For example, after a series of arithmetic operations,

3-10

Limitations on Precision

you may not know the exact answer because of word-size limitations, which
introduce rounding. If every operation in the series is performed twice, once
rounding to positive infinity and once rounding to negative infinity, you obtain
an upper limit and a lower limit on the correct answer. You can then decide if
the result is sufficiently accurate or if additional analysis is required.

Simplest Rounding
The Simplest rounding mode is currently available for the following blocks:

• Data Type Conversion

• Divide, Product, Product of Elements

• Interpolation Using Prelookup

• Lookup Table

• Lookup Table (2-D)

• Lookup Table Dynamic

• Prelookup

This mode attempts to reduce or eliminate the need for extra rounding code in
your generated code for these blocks. It does this in one or more of three ways
for each block, discussed in the following sections:

• “Optimize Rounding for Casts” on page 3-12

• “Optimize Rounding for High-Level Arithmetic Operations” on page 3-12

• “Optimize Rounding for Intermediate Arithmetic Operations” on page 3-13

Note In many cases, in order for the Simplest rounding mode to produce
the most efficient generated code, you must specify the Signed integer
division rounds to parameter on the Hardware Implementation pane
of the Configuration Parameters dialog box with the correct information for
your target hardware.

3-11

3 Arithmetic Operations

Optimize Rounding for Casts. The Data Type Conversion block casts a
signal with one data type to another data type. When the signal is cast to a
data type with a shorter word length than the original data type, precision is
lost and rounding occurs. The Simplest rounding mode automatically chooses
the best rounding for these cases based on the following rules:

• When the cast is from one integer or fixed-point data type to another, the
Simplest mode rounds toward floor.

• When the cast is from a floating-point data type to an integer or fixed-point
data type, the Simplest mode rounds toward zero.

Optimize Rounding for High-Level Arithmetic Operations. The
Simplest rounding mode chooses the best rounding for each high-level
arithmetic operation. For example, consider the operation y = u1 × u2 / u3
implemented using a Product block:

As stated in the C standard, the most efficient rounding mode for
multiplication operations in every case is floor. However, the C standard
does not specify the rounding mode for division in cases where at least one
of the operands is negative. Therefore, the most efficient rounding mode for
a divide operation with signed data types can be floor or zero depending on
your hardware.

The Simplest rounding mode

• Rounds to floor for all nondivision operations.

• Rounds to zero or floor for division, depending on the setting of the
Signed integer division rounds to parameter on the Hardware
Implementation pane of the Configuration Parameters dialog box.

3-12

Limitations on Precision

To get the most efficient code, you must specify whether your hardware
rounds to zero or to floor for integer divide in the Signed integer division
rounds to parameter. It is very common for a hardware target to round to
zero for integer division operations. Note that the Simplest mode enables
“mixed-mode” rounding for such cases, as it will round to floor for multiplies
and to zero for divides.

If the Signed integer division rounds to parameter is set to Undefined,
the simplest rounding mode may not be able to produce the most efficient
code. The Simplest mode will round to zero for division for this case, however
it cannot rely on your target hardware to perform the rounding since the
parameter is Undefined. Therefore, extra code has to be added to ensure
rounding to zero behavior.

Optimize Rounding for Intermediate Arithmetic Operations. For
fixed-point arithmetic with nonzero slope and bias, the Simplest rounding
mode also chooses the best rounding for each intermediate arithmetic
operation. For example, consider the operation y = u1 / u2 implemented using
a Product block, where u1 and u2 are fixed-point quantities:

As discussed in “Fixed-Point Numbers” on page 2-3, each fixed-point quantity
is calculated using its slope, bias, and stored integer. So in this example, not
only is there the high-level divide called for by the block operation, but there
are also intermediate additions and multiplies that are performed:

y
u
u

S Q B
S Q B

= = ⋅ +
⋅ +

1

2

1 1 1

2 2 2

The Simplest rounding mode performs the best rounding for each of these
operations, high-level and intermediate, to produce the most efficient
code. The rules used to select the appropriate rounding for intermediate
arithmetic operations are the same as those described in “Optimize Rounding

3-13

3 Arithmetic Operations

for High-Level Arithmetic Operations” on page 3-12. Again this enables
mixed-mode rounding, with the most common case being round toward floor
used for additions, subtractions, and multiplies, and round toward zero used
for divides.

Remember that you must specify the Signed integer division rounds to
parameter on the Hardware Implementation pane of the Configuration
Parameters dialog box with the correct information for your hardware to
generate the most efficient code using the Simplest rounding mode.

Padding with Trailing Zeros
Padding with trailing zeros involves extending the least significant bit (LSB)
of a number with extra bits. This method involves going from low precision to
higher precision.

For example, suppose two numbers are subtracted from each other. First,
the exponents must be aligned, which typically involves a right shift of the
number with the smaller value. In performing this shift, significant digits can
“fall off” to the right. However, when the appropriate number of extra bits
is appended, the precision of the result is maximized. Consider two 8-bit
fixed-point numbers that are close in value and subtracted from each other:

where q is an integer. To perform this operation, the exponents must be equal.

If the top number is padded by two zeros and the bottom number is padded
with one zero, then the above equation becomes

3-14

Limitations on Precision

which produces a more precise result. An example of padding with trailing
zeros in a Simulink model is illustrated in “Digital Controller Realization”
on page 6-15.

Example: Limitations on Precision and Errors
Fixed-point variables have a limited precision because digital systems
represent numbers with a finite number of bits. For example, suppose
you must represent the real-world number 35.375 with a fixed-point
number. Using the encoding scheme described in “Scaling” on page 2-5, the
representation is

The two closest approximations to the real-world value are Q = 13 and Q = 14.

In either case, the absolute error is the same:

For fixed-point values within the limited range, this represents the worst-case
error if round-to-nearest is used. If other rounding modes are used, the
worst-case error can be twice as large:

Example: Maximizing Precision
Precision is limited by slope. To achieve maximum precision, you should make
the slope as small as possible while keeping the range adequately large. The
bias is adjusted in coordination with the slope.

Assume the maximum and minimum real-world values are given by max(V)
and min(V), respectively. These limits might be known based on physical

3-15

3 Arithmetic Operations

principles or engineering considerations. To maximize the precision, you must
decide upon a rounding scheme and whether overflows saturate or wrap.
To simplify matters, this example assumes the minimum real-world value
corresponds to the minimum encoded value, and the maximum real-world
value corresponds to the maximum encoded value. Using the encoding scheme
described in “Scaling” on page 2-5, these values are given by

Solving for the slope, you get

This formula is independent of rounding and overflow issues, and depends
only on the word size, ws.

3-16

Limitations on Range

Limitations on Range

In this section...

“Introduction” on page 3-17

“Saturation and Wrapping” on page 3-18

“Guard Bits” on page 3-21

“Example: Limitations on Range” on page 3-21

Introduction
Limitations on the range of a fixed-point word occur for the same reason as
limitations on its precision. Namely, fixed-point words have limited size. For
a general discussion of range and precision, refer to “Range and Precision”
on page 2-9.

In binary arithmetic, a processor might need to take an n-bit fixed-point

number and store it in m bits, where . If m < n, the range of the number
has been reduced and an operation can produce an overflow condition.
Some processors identify this condition as Inf or NaN. For other processors,
especially digital signal processors (DSPs), the value saturates or wraps. If m
> n, the range of the number has been extended. Extending the range of a
word requires the inclusion of guard bits, which act to guard against potential
overflow. In both cases, the range depends on the word’s size and scaling.

The Simulink® software supports saturation and wrapping for all fixed-point
data types, while guard bits are supported only for fractional data types.
As shown in the following figure, you can select saturation or wrapping for
fixed-point Simulink blocks with the Saturate on integer overflow check
box, and you can specify guard bits with the Output data type parameter.

3-17

3 Arithmetic Operations

�������	�
��
������������
��������
�������
���
����	�����������
�	���
�	�������	�

�����������������	

Saturation and Wrapping
Saturation and wrapping describe a particular way that some processors deal
with overflow conditions. For example, the ADSP-2100 family of processors
from Analog Devices™ supports either of these modes. If a register has
a saturation mode of operation, then an overflow condition is set to the
maximum positive or negative value allowed. Conversely, if a register has a
wrapping mode of operation, an overflow condition is set to the appropriate
value within the range of the representation.

Example: Saturation and Wrapping
Consider an 8-bit unsigned word with binary-point-only scaling of 2-5. Suppose
this data type must represent a sine wave that ranges from -4 to 4. For values
between 0 and 4, the word can represent these numbers without regard to
overflow. This is not the case with negative numbers. If overflows saturate, all
negative values are set to zero, which is the smallest number representable by
the data type. The saturation of overflows is shown in the following figure.

3-18

Limitations on Range

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

Time

Overflows Saturate

Negative values
saturate to zero

Negative values
saturate to zero

If overflows wrap, all negative values are set to the appropriate positive value.
The wrapping of overflows is shown in the following figure.

3-19

3 Arithmetic Operations

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8
Overflows Wrap

Time

Negative values
wrap to positive
values.

Negative values
wrap to positive
values.

Note For most control applications, saturation is the safer way of dealing
with fixed-point overflow. However, some processor architectures allow
automatic saturation by hardware. If hardware saturation is not available,
then extra software is required, resulting in larger, slower programs. This
cost is justified in some designs—perhaps for safety reasons. Other designs
accept wrapping to obtain the smallest, fastest software.

3-20

Limitations on Range

Guard Bits
You can eliminate the possibility of overflow by appending the appropriate
number of guard bits to a binary word.

For a two’s complement signed value, the guard bits are filled with either 0’s
or 1’s depending on the value of the most significant bit (MSB). This is called
sign extension. For example, consider a 4-bit two’s complement number with
value 1011. If this number is extended in range to 7 bits with sign extension,
then the number becomes 1111101 and the value remains the same.

Guard bits are supported only for fractional data types. For both signed and
unsigned fractionals, the guard bits lie to the left of the default binary point.

Example: Limitations on Range
Fixed-point variables have a limited range for the same reason they have
limited precision—because digital systems represent numbers with a finite
number of bits. As a general example, consider the case where an integer
is represented as a fixed-point word of size ws. The range for signed and
unsigned words is given by

where

Using the general [Slope Bias] encoding scheme described in “Scaling” on
page 2-5, the approximate real-world value has the range

where

3-21

3 Arithmetic Operations

If the real-world value exceeds the limited range of the approximate value,
then the accuracy of the representation can become significantly worse.

3-22

Recommendations for Arithmetic and Scaling

Recommendations for Arithmetic and Scaling

In this section...

“Introduction” on page 3-23

“Addition” on page 3-24

“Accumulation” on page 3-27

“Multiplication” on page 3-27

“Gain” on page 3-29

“Division” on page 3-31

“Summary” on page 3-33

Introduction
The sections that follow describe the relationship between arithmetic
operations and fixed-point scaling, and offer some basic recommendations that
may be appropriate for your fixed-point design. For each arithmetic operation,

• The general [Slope Bias] encoding scheme described in “Scaling” on page
2-5 is used.

• The scaling of the result is automatically selected based on the scaling of
the two inputs. In other words, the scaling is inherited.

• Scaling choices are based on

- Minimizing the number of arithmetic operations of the result

- Maximizing the precision of the result

Additionally, binary-point-only scaling is presented as a special case of
the general encoding scheme.

In embedded systems, the scaling of variables at the hardware interface
(the ADC or DAC) is fixed. However for most other variables, the scaling is
something you can choose to give the best design. When scaling fixed-point
variables, it is important to remember that

• Your scaling choices depend on the particular design you are simulating.

3-23

3 Arithmetic Operations

• There is no best scaling approach. All choices have associated advantages
and disadvantages. It is the goal of this section to expose these advantages
and disadvantages to you.

Addition
Consider the addition of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

In a fixed-point system, the addition of values results in finding the variable
Qa:

This formula shows

• In general, Qa is not computed through a simple addition of Qb and Qc.

• In general, there are two multiplications of a constant and a variable, two
additions, and some additional bit shifting.

Inherited Scaling for Speed
In the process of finding the scaling of the sum, one reasonable goal is to
simplify the calculations. Simplifying the calculations should reduce the
number of operations, thereby increasing execution speed. The following
choices can help to minimize the number of arithmetic operations:

• Set Ba = Bb + Bc. This eliminates one addition.

• Set Fa = Fb or Fa = Fc. Either choice eliminates one of the two constant
times variable multiplications.

The resulting formula is

3-24

Recommendations for Arithmetic and Scaling

These equations appear to be equivalent. However, your choice of rounding
and precision may make one choice stand out over the other. To further
simplify matters, you could choose Ea = Ec or Ea = Eb. This will eliminate
some bit shifting.

Inherited Scaling for Maximum Precision
In the process of finding the scaling of the sum, one reasonable goal is
maximum precision. You can determine the maximum-precision scaling if the
range of the variable is known. “Example: Maximizing Precision” on page
3-15 shows that you can determine the range of a fixed-point operation from

and . For a summation, you can determine the range from

You can now derive the maximum-precision slope:

In most cases the input and output word sizes are much greater than one,
and the slope becomes

3-25

3 Arithmetic Operations

which depends only on the size of the input and output words. The
corresponding bias is

The value of the bias depends on whether the inputs and output are signed
or unsigned numbers.

If the inputs and output are all unsigned, then the minimum values for these
variables are all zero and the bias reduces to a particularly simple form:

If the inputs and the output are all signed, then the bias becomes

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa results in this simple expression:

This scaling choice results in only one addition and some bit shifting. The
avoidance of any multiplications is a big advantage of binary-point-only
scaling.

Note The subtraction of values produces results that are analogous to those
produced by the addition of values.

3-26

Recommendations for Arithmetic and Scaling

Accumulation
The accumulation of values is closely associated with addition:

Finding Qa_new involves one multiplication of a constant and a variable, two
additions, and some bit shifting:

The important difference for fixed-point implementations is that the scaling of
the output is identical to the scaling of the first input.

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa_new results in this simple expression:

This scaling option only involves one addition and some bit shifting.

Note The negative accumulation of values produces results that are
analogous to those produced by the accumulation of values.

Multiplication
Consider the multiplication of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

3-27

3 Arithmetic Operations

In a fixed-point system, the multiplication of values results in finding the
variable Qa:

This formula shows

• In general, Qa is not computed through a simple multiplication of Qb and Qc.

• In general, there is one multiplication of a constant and two variables, two
multiplications of a constant and a variable, three additions, and some
additional bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = BbBc. This eliminates one addition operation.

• Set Fa = FbFc. This simplifies the triple multiplication—certainly the most
difficult part of the equation to implement.

• Set Ea = Eb + Ec. This eliminates some of the bit shifting.

The resulting formula is

Inherited Scaling for Maximum Precision
You can determine the maximum-precision scaling if the range of the variable
is known. “Example: Maximizing Precision” on page 3-15 shows that you can
determine the range of a fixed-point operation from

3-28

Recommendations for Arithmetic and Scaling

and

For multiplication, you can determine the range from

where

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa results in this simple expression:

Gain
Consider the multiplication of a constant and a variable

where K is a constant called the gain. Since Va results from the multiplication
of a constant and a variable, finding Qa is a simplified version of the general
fixed-point multiplication formula:

3-29

3 Arithmetic Operations

Note that the terms in the parentheses can be calculated offline. Therefore,
there is only one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated
form, the constants need to be encoded using a binary-point-only format. For
each of these constants, the range is the trivial case of only one value. Despite
the trivial range, the binary point formulas for maximum precision are still
valid. The maximum-precision representations are the most useful choices
unless there is an overriding need to avoid any shifting. The encoding of
the constants is

resulting in the formula

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = KBb. This eliminates one constant term.

• Set Fa = KFb and Ea = Eb. This sets the other constant term to unity.

The resulting formula is simply

3-30

Recommendations for Arithmetic and Scaling

If the number of bits is different, then either handling potential overflows or
performing sign extensions is the only possible operation involved.

Inherited Scaling for Maximum Precision
The scaling for maximum precision does not need to be different from the
scaling for speed unless the output has fewer bits than the input. If this is the
case, then saturation should be avoided by dividing the slope by 2 for each lost
bit. This prevents saturation but causes rounding to occur.

Division
Division of values is an operation that should be avoided in fixed-point
embedded systems, but it can occur in places. Therefore, consider the division
of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

In a fixed-point system, the division of values results in finding the variable
Qa:

This formula shows

• In general, Qa is not computed through a simple division of Qb by Qc.

• In general, there are two multiplications of a constant and a variable, two
additions, one division of a variable by a variable, one division of a constant
by a variable, and some additional bit shifting.

3-31

3 Arithmetic Operations

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = 0. This eliminates one addition operation.

• If Bc = 0, then set the fractional slope Fa = Fb/Fc. This eliminates one
constant times variable multiplication.

The resulting formula is

If , then no clear recommendation can be made.

Inherited Scaling for Maximum Precision
You can determine the maximum-precision scaling if the range of the variable
is known. “Example: Maximizing Precision” on page 3-15 shows that you can

determine the range of a fixed-point operation from and .
For division, you can determine the range from

where for nonzero denominators

3-32

Recommendations for Arithmetic and Scaling

Binary-Point-Only Scaling
For binary-point-only scaling, finding Qa results in this simple expression:

Note For the last two formulas involving Qa, a divide by zero and zero
divided by zero are possible. In these cases, the hardware will give some
default behavior but you must make sure that these default responses give
meaningful results for the embedded system.

Summary
From the previous analysis of fixed-point variables scaled within the general
[Slope Bias] encoding scheme, you can conclude

• Addition, subtraction, multiplication, and division can be very involved
unless certain choices are made for the biases and slopes.

• Binary-point-only scaling guarantees simpler math, but generally sacrifices
some precision.

Note that the previous formulas don’t show the following:

• Constants and variables are represented with a finite number of bits.

• Variables are either signed or unsigned.

• Rounding and overflow handling schemes. You must make these decisions
before an actual fixed-point realization is achieved.

3-33

3 Arithmetic Operations

Parameter and Signal Conversions

In this section...

“Introduction” on page 3-34

“Parameter Conversions” on page 3-35

“Signal Conversions” on page 3-36

Introduction
The previous sections of this chapter, together with Chapter 2, “Data Types
and Scaling” describe how data types, scaling, rounding, overflow handling,
and arithmetic operations are incorporated into the Simulink® software’s
fixed-point support. With this knowledge, you can define the output of a
fixed-point model by configuring fixed-point blocks to suit your particular
application.

However, to completely understand the results generated by fixed-point
Simulink blocks, you must be aware of these issues:

• When numerical block parameters are converted from doubles to Simulink®

Fixed Point™ data types

• When input signals are converted from one Simulink Fixed Point data type
to another (if at all)

• When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point Simulink block performs an arithmetic
operation on its input signal and a parameter, and then generates output
having characteristics that are specified by the block. The following diagram
illustrates how these issues are related.

3-34

Parameter and Signal Conversions

The sections that follow describe parameter and signal conversions. “Rules for
Arithmetic Operations” on page 3-39 discusses arithmetic operations.

Parameter Conversions
Parameters of fixed-point blocks that accept numerical values are always
converted from double to a fixed-point data type. Parameters can be
converted to the input data type, the output data type, or to a data type
explicitly specified by the block. For example, the Discrete FIR Filter block
converts its Initial states parameter to the input data type, and converts its
Numerator coefficient parameter to a data type you explicitly specify via
the block dialog box.

Parameters are always converted before any arithmetic operations are
performed. Additionally, parameters are always converted offline using
round-to-nearest and saturation. Offline conversions are discussed below.

3-35

3 Arithmetic Operations

Note Because parameters of fixed-point blocks begin as double, they are
never precise to more than 53 bits. Therefore, if the output of your fixed-point
block is longer than 53 bits, your result might be less precise than you
anticipated.

Offline Conversions
An offline conversion is a conversion performed by your development platform
(for example, the processor on your PC), and not by the fixed-point processor
you are targeting. For example, suppose you are using a PC to develop a
program to run on a fixed-point processor, and you need the fixed-point
processor to compute

over and over again. If a, b, and c are constant parameters, it is inefficient
for the fixed-point processor to compute ab/c every time. Instead, the PC’s
processor should compute ab/c offline one time, and the fixed-point processor
computes only . This eliminates two costly fixed-point arithmetic
operations.

Signal Conversions
Consider the conversion of a real-world value from one fixed-point data type
to another. Ideally, the values before and after the conversion are equal.

where Vb is the input value and Va is the output value. To see how the
conversion is implemented, the two ideal values are replaced by the general
[Slope Bias] encoding scheme described in “Scaling” on page 2-5:

Solving for the output data type’s stored integer value, Qa is obtained:

3-36

Parameter and Signal Conversions

where Fs is the adjusted fractional slope and Bnet is the net bias. The offline
conversions and online conversions and operations are discussed below.

Offline Conversions
Both Fs and Bnet are computed offline using round-to-nearest and saturation.
Bnet is then stored using the output data type and Fs is stored using an
automatically selected data type.

Online Conversions and Operations
The remaining conversions and operations are performed online by the
fixed-point processor, and depend on the slopes and biases for the input and
output data types. The conversions and operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

2 The input integer value, Qb, is multiplied by the adjusted slope, Fs:

3 The result of step 2 is converted to the modified output data type where the
slope is one and bias is zero:

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

3-37

3 Arithmetic Operations

This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code
Note that the maximum number of conversions and operations is performed
when the slopes and biases of the input signal and output signal differ (are
mismatched). If the scaling of these signals is identical (matched), the number
of operations is reduced from the worst (most inefficient) case. For example,
when an input has the same fractional slope and bias as the output, only
step 3 is required:

Exclusive use of binary-point-only scaling for both input signals and output
signals is a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.

3-38

Rules for Arithmetic Operations

Rules for Arithmetic Operations

In this section...

“Introduction” on page 3-39

“Computational Units” on page 3-39

“Addition and Subtraction” on page 3-40

“Multiplication” on page 3-45

“Division” on page 3-52

“Shifts” on page 3-54

Introduction
Fixed-point arithmetic refers to how signed or unsigned binary words are
operated on. The simplicity of fixed-point arithmetic functions such as
addition and subtraction allows for cost-effective hardware implementations.

The sections that follow describe the rules that the Simulink® software
follows when arithmetic operations are performed on inputs and parameters.
These rules are organized into four groups based on the operations involved:
addition and subtraction, multiplication, division, and shifts. For each of these
four groups, the rules for performing the specified operation are presented
with an example using the rules.

Note For information about calculations using Fixed-Point Toolbox™
software, see the Fixed-Point Toolbox User’s Guide.

Computational Units
The core architecture of many processors contains several computational
units including arithmetic logic units (ALUs), multiply and accumulate units
(MACs), and shifters. These computational units process the binary data
directly and provide support for arithmetic computations of varying precision.
The ALU performs a standard set of arithmetic and logic operations as well as
division. The MAC performs multiply, multiply/add, and multiply/subtract

3-39

3 Arithmetic Operations

operations. The shifter performs logical and arithmetic shifts, normalization,
denormalization, and other operations.

Addition and Subtraction
Addition is the most common arithmetic operation a processor performs.
When two n-bit numbers are added together, it is always possible to produce a
result with n + 1 nonzero digits due to a carry from the leftmost digit. For
two’s complement addition of two numbers, there are three cases to consider:

• If both numbers are positive and the result of their addition has a sign bit
of 1, then overflow has occurred; otherwise the result is correct.

• If both numbers are negative and the sign of the result is 0, then overflow
has occurred; otherwise the result is correct.

• If the numbers are of unlike sign, overflow cannot occur and the result is
always correct.

Fixed-Point Simulink® Blocks Summation Process
Consider the summation of two numbers. Ideally, the real-world values obey
the equation

where Vb and Vc are the input values and Va is the output value. To see how
the summation is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

The equation in “Addition” on page 3-24 gives the solution of the resulting
equation for the stored integer, Qa. Using shorthand notation, that equation
becomes

3-40

Rules for Arithmetic Operations

where Fsb and Fsc are the adjusted fractional slopes and Bnet is the net bias.
The offline conversions and online conversions and operations are discussed
below.

Offline Conversions. Fsb, Fsc, and Bnet are computed offline using
round-to-nearest and saturation. Furthermore, Bnet is stored using the output
data type.

Online Conversions and Operations. The remaining operations are
performed online by the fixed-point processor, and depend on the slopes
and biases for the input and output data types. The worst (most inefficient)
case occurs when the slopes and biases are mismatched. The worst-case
conversions and operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

2 The first input integer value, Qb, is multiplied by the adjusted slope, Fsb:

3 The previous product is converted to the modified output data type where
the slope is one and the bias is zero:

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

This summation includes any necessary overflow handling.

5 Steps 2 to 4 are repeated for every number to be summed.

3-41

3 Arithmetic Operations

It is important to note that bit shifting, rounding, and overflow handling are
applied to the intermediate steps (3 and 4) and not to the overall sum.

Streamlining Simulations and Generated Code
If the scaling of the input and output signals is matched, the number of
summation operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope as the output, step 2
reduces to multiplication by one and can be eliminated. Trivial steps in the
summation process are eliminated for both simulation and code generation.
Exclusive use of binary-point-only scaling for both input signals and output
signals is a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.

Example: The Summation Process
Suppose you want to sum three numbers. Each of these numbers is
represented by an 8-bit word, and each has a different binary-point-only
scaling. Additionally, the output is restricted to an 8-bit word with
binary-point-only scaling of 2-3.

The summation is shown in the following model for the input values 19.875,
5.4375, and 4.84375.

Applying the rules from the previous section, the sum follows these steps:

1 Because the biases are matched, the initial value of Qa is trivial:

3-42

Rules for Arithmetic Operations

2 The first number to be summed (19.875) has a fractional slope that matches
the output fractional slope. Furthermore, the binary points and storage
types are identical, so the conversion is trivial:

3 The summation operation is performed:

4 The second number to be summed (5.4375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted one place to
the right:

Note that a loss in precision of one bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

5 The summation operation is performed:

3-43

3 Arithmetic Operations

Note that overflow did not occur, but it is possible for this operation.

6 The third number to be summed (4.84375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted two places
to the right:

Note that a loss in precision of two bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

7 The summation operation is performed:

Note that overflow did not occur, but it is possible for this operation.

As shown here, the result of step 7 differs from the ideal sum:

Blocks that perform addition and subtraction include the Sum, Gain, and
Discrete FIR Filter blocks.

3-44

Rules for Arithmetic Operations

Multiplication
The multiplication of an n-bit binary number with an m-bit binary number
results in a product that is up to m + n bits in length for both signed and
unsigned words. Most processors perform n-bit by n-bit multiplication and
produce a 2n-bit result (double bits) assuming there is no overflow condition.

Fixed-Point Simulink® Blocks Multiplication Process
Consider the multiplication of two numbers. Ideally, the real-world values
obey the equation

where Vb and Vc are the input values and Va is the output value. To see how
the multiplication is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

The solution of the resulting equation for the output stored integer, Qa, is
given below:

Multiplication with Nonzero Biases and Mismatched Fractional
Slopes. The worst-case implementation of the above equation occurs when
the slopes and biases of the input and output signals are mismatched. In
such cases, several low-level integer operations are required to carry out the
high-level multiplication (or division). Implementation choices made about
these low-level computations can affect the efficiency and the possibility of
rounding errors and overflow.

3-45

3 Arithmetic Operations

In Simulink blocks, the actual multiplication or division operation is always
performed on fixed-point variables that have zero biases. If an input has
nonzero bias, it is converted to a representation that has binary-point-only
scaling before the operation. If the result is to have nonzero bias, the operation
is first performed with temporary variables that have binary-point-only
scaling. The result is then converted to the data type and scaling of the final
output.

If both the inputs and the output have nonzero biases, then the operation is
broken down as follows:

where

These equations show that the temporary variables have binary-point-only
scaling. However, the equations do not indicate the signedness, word lengths,
or values of the fixed exponent of these variables. The Simulink software
assigns these properties to the temporary variables based on the following
goals:

• Represent the original value without overflow.

The data type and scaling of the original value define a maximum and
minimum real-world value:

3-46

Rules for Arithmetic Operations

The data type and scaling of the temporary value must be able to represent
this range without overflow. Precision loss is possible, but overflow is never
allowed.

• Use a data type that leads to efficient operations.

This goal is relative to the target that you will use for production
deployment of your design. For example, suppose that you will implement
the design on a 16-bit fixed-point processor that provides a 32-bit long,
16-bit int, and 8-bit short or char. For such a target, preserving efficiency
means that no more than 32 bits are used, and the smaller sizes of 8 or 16
bits are used if they are sufficient to maintain precision.

• Maintain precision.

Ideally, every possible value defined by the original data type and scaling
is represented perfectly by the temporary variable. However, this can
require more bits than is efficient. Bits are discarded, resulting in a loss of
precision, to the extent required to preserve efficiency.

For example, consider the following, assuming a 16-bit microprocessor target:

where Qoriginal is an 8-bit, unsigned data type. For this data type,

so

3-47

3 Arithmetic Operations

The minimum possible value is negative, so the temporary variable must be a
signed integer data type. The original variable has a slope of 1, but the bias is
expressed with greater precision with two digits after the binary point. To
get full precision, the fixed exponent of the temporary variable has to be -2
or less. The Simulink software selects the least possible precision, which is
generally the most efficient, unless overflow issues arise. For a scaling of 2-2,
selecting signed 16-bit or signed 32-bit avoids overflow. For efficiency, the
Simulink software selects the smaller choice of 16 bits. If the original variable
is an input, then the equations to convert to the temporary variable are

Multiplication with Zero Biases and Mismatched Fractional Slopes.
When the biases are zero and the fractional slopes are mismatched, the
implementation reduces to

Offline Conversions

The quantity

is calculated offline using round-to-nearest and saturation. FNet is stored
using a fixed-point data type of the form

where ENet and QNet are selected automatically to best represent FNet.

3-48

Rules for Arithmetic Operations

Online Conversions and Operations

1 The integer values Qb and Qc are multiplied:

To maintain the full precision of the product, the binary point of QRawProduct
is given by the sum of the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-36 discusses conversions.

3 The multiplication

is performed.

4 The previous product is converted to the output data type:

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-36 discusses conversions.

5 Steps 1 through 4 are repeated for each additional number to be multiplied.

Multiplication with Zero Biases and Matching Fractional Slopes.
When the biases are zero and the fractional slopes match, the implementation
reduces to

Offline Conversions

3-49

3 Arithmetic Operations

No offline conversions are performed.

Online Conversions and Operations

1 The integer values Qb and Qc are multiplied:

To maintain the full precision of the product, the binary point of QRawProduct
is given by the sum of the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-36 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

Example: The Multiplication Process
Suppose you want to multiply three numbers. Each of these numbers is
represented by a 5-bit word, and each has a different binary-point-only scaling.
Additionally, the output is restricted to a 10-bit word with binary-point-only
scaling of 2-4. The multiplication is shown in the following model for the input
values 5.75, 2.375, and 1.8125.

3-50

Rules for Arithmetic Operations

Applying the rules from the previous section, the multiplication follows these
steps:

1 The first two numbers (5.75 and 2.375) are multiplied:

Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

2 The result of step 1 is converted to the output data type:

“Signal Conversions” on page 3-36 discusses conversions. Note that a loss in
precision of one bit occurs, with the resulting value of QTemp determined by
the rounding mode. For this example, round-to-floor is used. Furthermore,
overflow did not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied:

3-51

3 Arithmetic Operations

Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

4 The product is converted to the output data type:

“Signal Conversions” on page 3-36 discusses conversions. Note that a loss in
precision of 4 bits occurred, with the resulting value of QTemp determined by
the rounding mode. For this example, round-to-floor is used. Furthermore,
overflow did not occur but is possible for this operation.

Blocks that perform multiplication include the Product, Discrete FIR Filter,
and Gain blocks.

Division
This section discusses the division of quantities with zero bias.

Note When any input to a division calculation has nonzero bias, the
operations performed exactly match those for multiplication described in
“Multiplication with Nonzero Biases and Mismatched Fractional Slopes” on
page 3-45.

Fixed-Point Simulink® Blocks Division Process
Consider the division of two numbers. Ideally, the real-world values obey
the equation

where Vb and Vc are the input values and Va is the output value. To see
how the division is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

3-52

Rules for Arithmetic Operations

For the case where the slopes are one and the biases are zero for all signals,
the solution of the resulting equation for the output stored integer, Qa, is
given by the following equation:

This equation involves an integer division and some bit shifts. If ,
then any bit shifts are to the right and the implementation is simple. However,

if , then the bit shifts are to the left and the implementation can
be more complicated. The essential issue is that the output has more precision
than the integer division provides. To get full precision, a fractional division
is needed. The C programming language provides access to integer division
only for fixed-point data types. Depending on the size of the numerator,
you can obtain some of the fractional bits by performing a shift prior to the
integer division. In the worst case, it might be necessary to resort to repeated
subtractions in software.

In general, division of values is an operation that should be avoided in
fixed-point embedded systems. Division where the output has more precision

than the integer division (i.e.,) should be used with even greater
reluctance.

Example: The Division Process
Suppose you want to divide two numbers. Each of these numbers is
represented by an 8-bit word, and each has a binary-point-only scaling of 2-4.
Additionally, the output is restricted to an 8-bit word with binary-point-only
scaling of 2-4.

The division of 9.1875 by 1.5000 is shown in the following model.

3-53

3 Arithmetic Operations

For this example,

Assuming a large data type was available, this could be implemented as

where the numerator uses the larger data type. If a larger data type was not
available, integer division combined with four repeated subtractions would
be used. Both approaches produce the same result, with the former being
more efficient.

Shifts
Nearly all microprocessors and digital signal processors support well-defined
bit-shift (or simply shift) operations for integers. For example, consider the
8-bit unsigned integer 00110101. The results of a 2-bit shift to the left and a
2-bit shift to the right are shown in the following table.

Shift Operation Binary Value Decimal Value

No shift (original number) 00110101 53

3-54

Rules for Arithmetic Operations

Shift Operation Binary Value Decimal Value

Shift left by 2 bits 11010100 212

Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use
this block to perform a bit shift, a binary point shift, or both. See the
documentation for the Shift Arithmetic block in the Simulink Reference for
more information on performing bit and binary point shifts.

Shifting Bits to the Right
The special case of shifting bits to the right requires consideration of the
treatment of the leftmost bit, which can contain sign information. A shift to
the right can be classified either as a logical shift right or an arithmetic shift
right. For a logical shift right, a 0 is incorporated into the most significant
bit for each bit shift. For an arithmetic shift right, the most significant bit
is recycled for each bit shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore,
recycles the most significant bit for each bit shift right. For example, given
the fixed-point number 11001.011 (-6.625), a bit shift two places to the right
with the binary point unmoved yields the number 11110.010 (-1.75), as shown
in the model below:

To perform a logical shift right on a signed number using the Shift Arithmetic
block, use the Data Type Conversion block to cast the number as an unsigned
number of equivalent length and scaling, as shown in the following model.
The model shows that the fixed-point signed number 11001.001 (-6.625)
becomes 00110.010 (6.25).

3-55

3 Arithmetic Operations

Example: Conversions and Arithmetic Operations
This example uses the Discrete FIR Filter block to illustrate when parameters
are converted from a double to a fixed-point number, when the input data
type is converted to the output data type, and when the rules for addition,
subtraction, and multiplication are applied. For details about conversions and
operations, refer to “Parameter and Signal Conversions” on page 3-34 and
“Rules for Arithmetic Operations” on page 3-39.

Note If a block can perform all four arithmetic operations, then the rules for
multiplication and division are applied first. The Discrete FIR Filter block
is an example of this.

Suppose you configure the Discrete FIR Filter block for two outputs, where
the first output is given by

and the second output is given by

Additionally, the initial values of and are given by
0.8 and 1.1, respectively, and all inputs, parameters, and outputs have
binary-point-only scaling.

To configure the Discrete FIR Filter block for this situation, on the Main pane
of its dialog box, you must specify the Numerator coefficient parameter
as [13 11 -7; 6 -5 0] and the Initial states parameter as [0.8 1.1], as
shown here.

3-56

Example: Conversions and Arithmetic Operations

Similarly, configure the options on the Fixed-point pane of the block’s dialog
box to appear as follows:

3-57

3 Arithmetic Operations

Parameter conversions and block operations are given below in the order in
which they are carried out by the Discrete FIR Filter block:

1 The Numerator coefficient parameter is converted offline from doubles
to the Coefficient data type value using round-to-nearest and saturation.

3-58

Example: Conversions and Arithmetic Operations

The Initial states parameter is converted offline from doubles to the input
data type using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step
for both outputs. For y1(0), the operations , , and
are performed, while for y2(0), the operations and are
performed.

The results of these operations are then converted to the Output data
type value using the specified rounding and overflow modes.

3 The sum is carried out for y1(0) and y2(0). Note that the rules for addition
and subtraction are satisfied, because the coefficients and inputs are
already converted to the Output data type value.

4 Steps 2 and 3 are repeated for subsequent time steps.

3-59

3 Arithmetic Operations

3-60

4

Realization Structures

Overview (p. 4-2) Provides a brief overview of creating
filters using fixed-point Simulink®

blocks

Targeting an Embedded Processor
(p. 4-4)

Describes issues that arise when
targeting a fixed-point design for use
on an embedded processor

Canonical Forms (p. 4-7) Discusses some canonical forms that
optimize filter implementation with
respect to certain factors

4 Realization Structures

Overview

In this section...

“Introduction” on page 4-2

“Realizations and Data Types” on page 4-2

Introduction
This chapter investigates how you can realize fixed-point digital filters using
Simulink® blocks and the Simulink® Fixed Point™ software.

The Simulink Fixed Point software addresses the needs of the control system,
signal processing, and other fields where algorithms are implemented on
fixed-point hardware. In signal processing, a digital filter is a computational
algorithm that converts a sequence of input numbers to a sequence of
output numbers. The algorithm is designed such that the output signal
meets frequency-domain or time-domain constraints (desirable frequency
components are passed, undesirable components are rejected).

In general terms, a discrete transfer function controller is a form of a digital
filter. However, a digital controller can contain nonlinear functions such as
lookup tables in addition to a discrete transfer function. This guide uses the
term digital filter when referring to discrete transfer functions.

Note To design and implement a wide variety of floating-point and
fixed-point filters suitable for use in signal processing applications and for
deployment on DSP chips, use the Signal Processing Blockset™ software.

Realizations and Data Types
In an ideal world, where numbers, calculations, and storage of states have
infinite precision and range, there are virtually an infinite number of
realizations for the same system. In theory, these realizations are all identical.

In the more realistic world of double-precision numbers, calculations, and
storage of states, small nonlinearities are introduced by the finite precision
and range of floating-point data types. Therefore, each realization of a given

4-2

Overview

system produces different results. In most cases however, these differences
are small.

In the world of fixed-point numbers, where precision and range are limited,
the differences in the realization results can be very large. Therefore, you
must carefully select the data type, word size, and scaling for each realization
element such that results are accurately represented. To assist you with this
selection, design rules for modeling dynamic systems with fixed-point math
are provided in “Targeting an Embedded Processor” on page 4-4.

4-3

4 Realization Structures

Targeting an Embedded Processor

In this section...

“Introduction” on page 4-4

“Size Assumptions” on page 4-4

“Operation Assumptions” on page 4-4

“Design Rules” on page 4-5

Introduction
The sections that follow describe issues that often arise when targeting a
fixed-point design for use on an embedded processor, such as some general
assumptions about integer sizes and operations available on embedded
processors. These assumptions lead to design issues and design rules that
might be useful for your specific fixed-point design.

Size Assumptions
Embedded processors are typically characterized by a particular bit size. For
example, the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common.
It is generally safe to assume that the processor is predominantly geared to
processing integers of the specified bit size. Integers of the specified bit size
are referred to as the base data type. Additionally, the processor typically
provides some support for integers that are twice as wide as the base data
type. Integers consisting of double bits are referred to as the accumulator
data type. For example a 16-bit micro has a 16-bit base data type and a 32-bit
accumulator data type.

Although other data types may be supported by the embedded processor, this
section describes only the base and accumulator data types.

Operation Assumptions
The embedded processor operations discussed in this section are limited to the
needs of a basic simulation diagram. Basic simulations use multiplication,
addition, subtraction, and delays. Fixed-point models also need shifts to
do scaling conversions. For all these operations, the embedded processor

4-4

Targeting an Embedded Processor

should have native instructions that allow the base data type as inputs.
For accumulator-type inputs, the processor typically supports addition,
subtraction, and delay (storage/retrieval from memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs because
of complexity and size issues. A difficulty with multiplication is that the
output needs to be twice as big as the inputs for full precision. For example,
multiplying two 16-bit numbers requires a 32-bit output for full precision.
The need to handle the outputs from a multiplication operation is one of the
reasons embedded processors include accumulator-type support. However, if
multiplication of accumulator-type inputs is also supported, then there is a
need to support a data type that is twice as big as the accumulator type. To
restrict this additional complexity, multiplication is typically not supported
for inputs of the accumulator type.

Design Rules
The important design rules that you should be aware of when modeling
dynamic systems with fixed-point math follow.

Design Rule 1: Only Multiply Base Data Types
It is best to multiply only inputs of the base data type. Embedded processors
typically provide an instruction for the multiplication of base-type inputs, but
not for the multiplication of accumulator-type inputs. If necessary, you can
combine several instructions to handle multiplication of accumulator-type
inputs. However, this can lead to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator type to the base
type prior to Product or Gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type
There are two general reasons why a Unit Delay should use only base-type
numbers:

• The Unit Delay essentially stores a variable’s value to RAM and, one time
step later, retrieves that value from RAM. Because the value must be in
memory from one time step to the next, the RAM must be exclusively
dedicated to the variable and can’t be shared or used for another purpose.

4-5

4 Realization Structures

Using accumulator-type numbers instead of the base data type doubles
the RAM requirements, which can significantly increase the cost of the
embedded system.

• The Unit Delay typically feeds into a Gain block. The multiplication design
rule requires that the input (the unit delay signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator
Data Type
Except for unit delay signals, most signals are not needed from one time step
to the next. This means that the signal values can be temporarily stored in
shared and reused memory. This shared and reused memory can be RAM or
it can simply be registers in the CPU. In either case, storing the value as
an accumulator data type is not much more costly than storing it as a base
data type.

Design Rule 4: Summation Can Use the Accumulator Data Type
Addition and subtraction can use the accumulator data type if there is
justification. The typical justification is reducing the buildup of errors due to
roundoff or overflow.

For example, a common filter operation is a weighted sum of several variables.
Multiplying a variable by a weight naturally produces a product of the
accumulator type. Before summing, each product can be converted back to
the base data type. This approach introduces round-off error into each part
of the sum.

Alternatively, the products can be summed using the accumulator data type,
and the final sum can be converted to the base data type. Round-off error is
introduced in just one point and the precision is generally better. The cost of
doing an addition or subtraction using accumulator-type numbers is slightly
more expensive, but if there is justification, it is usually worth the cost.

4-6

Canonical Forms

Canonical Forms

In this section...

“Introduction” on page 4-7

“Direct Form II” on page 4-8

“Series Cascade Form” on page 4-11

“Parallel Form” on page 4-14

Introduction
The Simulink® Fixed Point™ software does not attempt to standardize on
one particular fixed-point digital filter design method. For example, you
can produce a design in continuous time and then obtain an “equivalent”
discrete-time digital filter using one of many transformation methods.
Alternatively, you can design digital filters directly in discrete time. After you
obtain a digital filter, it can be realized for fixed-point hardware using any
number of canonical forms. Typical canonical forms are the direct form, series
form, and parallel form, each of which is outlined in the sections that follow.

For a given digital filter, the canonical forms describe a set of fundamental
operations for the processor. Because there are an infinite number of ways
to realize a given digital filter, you must make the best realization on a
per-system basis. The canonical forms presented in this chapter optimize the
implementation with respect to some factor, such as minimum number of
delay elements.

In general, when choosing a realization method, you must take these factors
into consideration:

• Cost

The cost of the realization might rely on minimal code and data size.

• Timing constraints

Real-time systems must complete their compute cycle within a fixed
amount of time. Some realizations might yield faster execution speed on
different processors.

4-7

4 Realization Structures

• Output signal quality

The limited range and precision of the binary words used to represent
real-world numbers will introduce errors. Some realizations are more
sensitive to these errors than others.

The Simulink Fixed Point software allows you to evaluate various digital filter
realization methods in a simulation environment. Following the development
cycle outlined in “The Development Cycle” on page 1-19, you can fine-tune
the realizations with the goal of reducing the cost (code and data size) or
increasing signal quality. After you have achieved the desired performance,
you can use the Real-Time Workshop® product to generate rapid prototyping
C code and evaluate its performance with respect to your system’s real-time
timing constraints. You can then modify the model based upon feedback from
the rapid prototyping system.

The presentation of the various realization structures takes into account that
a summing junction is a fundamental operator, thus you may find that the
structures presented here look different from those in the fixed-point filter
design literature. For each realization form, an example is provided using the
transfer function shown here:

Direct Form II
In general, a direct form realization refers to a structure where the coefficients
of the transfer function appear directly as Gain blocks. The direct form
II realization method is presented as using the minimal number of delay
elements, which is equal to n, the order of the transfer function denominator.

The canonical direct form II is presented as “Standard Programming”
in Discrete-Time Control Systems by Ogata. It is known as the “Control

4-8

Canonical Forms

Canonical Form” in Digital Control of Dynamic Systems by Franklin, Powell,
and Workman.

You can derive the canonical direct form II realization by writing the
discrete-time transfer function with input e(z) and output u(z) as

The block diagram for u(z)/h(z) follows.

The block diagrams for h(z)/e(z) follow.

4-9

4 Realization Structures

Combining these two block diagrams yields the direct form II diagram shown
in the following figure. Notice that the feedforward part (top of block diagram)
contains the numerator coefficients and the feedback part (bottom of block
diagram) contains the denominator coefficients.

4-10

Canonical Forms

The direct form II example transfer function is given by

The realization of Hex(z) using fixed-point Simulink® blocks is shown in the
following figure. You can display this model by typing

fxpdemo_direct_form2

at the MATLAB® command line.

Series Cascade Form
In the canonical series cascade form, the transfer function H(z) is written as a
product of first-order and second-order transfer functions.

4-11

4 Realization Structures

This equation yields the canonical series cascade form.

Factoring H(z) into Hi(z) where i = 1,2,3,...,p can be done in a number of ways.
Using the poles and zeros of H(z), you can obtain Hi(z) by grouping pairs
of conjugate complex poles and pairs of conjugate complex zeros to produce
second-order transfer functions, or by grouping real poles and real zeros to
produce either first-order or second-order transfer functions. You could also
group two real zeros with a pair of conjugate complex poles or vice versa.
Since there are many ways to obtain Hi(z), you should compare the various
groupings to see which produces the best results for the transfer function
under consideration.

For example, one factorization of H(z) might be

You must also take into consideration that the ordering of the individual
Hi(z)’s will lead to systems with different numerical characteristics. You might
want to try various orderings for a given set of Hi(z)’s to determine which
gives the best numerical characteristics.

The first-order diagram for H(z) follows.

4-12

Canonical Forms

The second-order diagram for H(z) follows.

The series cascade form example transfer function is given by

4-13

4 Realization Structures

The realization of Hex(z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.

Parallel Form
In the canonical parallel form, the transfer function H(z) is expanded into
partial fractions. H(z) is then realized as a sum of a constant, first-order, and
second-order transfer functions, as shown.

This expansion, where K is a constant and the are the first- and
second-order transfer functions, follows.

4-14

Canonical Forms

As in the series canonical form, there is no unique description for the
first-order and second-order transfer function. Because of the nature of the
Sum block, the ordering of the individual filters doesn’t matter. However,
because of the constant K, you can choose the first-order and second-order
transfer functions such that their forms are simpler than those for the series
cascade form described in the preceding section. This is done by expanding
H(z) as

The first-order diagram for H(z) follows.

4-15

4 Realization Structures

The second-order diagram for H(z) follows.

The parallel form example transfer function is given by

4-16

Canonical Forms

The realization of Hex(z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.

4-17

4 Realization Structures

4-18

5

Fixed-Point Advisor

Working With the Fixed-Point
Advisor (p. 5-2)

Introduces the Fixed-Point Advisor

Tutorial: Converting a Model from
Floating- to Fixed-Point (p. 5-5)

Provides a step-by-step tutorial
on how to convert a model from
floating-point to fixed-point data
types

5 Fixed-Point Advisor

Working With the Fixed-Point Advisor

In this section...

“Introduction to the Fixed-Point Advisor” on page 5-2

“Running the Fixed-Point Advisor” on page 5-2

“Fixing a Task Failure” on page 5-3

“Automatically Fixing Failures” on page 5-3

“Batch Fixing Failures” on page 5-4

Introduction to the Fixed-Point Advisor
The Fixed-Point Advisor provides a set of tasks to facilitate converting a
floating-point model or subsystem to an equivalent fixed-point representation.
You can use the Fixed-Point Advisor to prepare a model for conversion and
obtain an initial scaling to use as the starting point for refinement and
exploration inside the Fixed-Point Tool.

Running the Fixed-Point Advisor

1 Open a model.

2 Start the Fixed-Point Advisor by

• Typing fpcadvisor('model_name/subsystem_name') at the MATLAB®

command line.

• Selecting a subsystem and then selecting Fixed-Point > Fixed-Point
Advisor from the Tools menu.

• Right-clicking a subsystem block and then selecting
Fixed-Point > Fixed-Point Advisor from the subsystem
context menu.

The Fixed-Point Advisor dialog opens.

3 Select the Fixed-Point Advisor folder in the Task Hierarchy pane.

4 Run the advisor by

5-2

Working With the Fixed-Point Advisor

• Selecting Run to Failure from the Run menu.

• Right-clicking the Fixed-Point Advisor folder and selecting Run to
Failure from the folder context menu.

The Fixed-Point Advisor runs the tasks in order until a task fails. A
waitbar is displayed while each task runs.

5 Review the results. If a task fails because input parameters are not
specified, select an Input Parameter. Then continue running to failure by
right-clicking the task and selecting Continue from the context menu. If
the task fails for a different reason, fix the task as described in “Fixing a
Task Failure” on page 5-3.

Fixing a Task Failure
Tasks fail when there is a step for you to take to convert your model from
floating-point to fixed-point. For more information on why a specific task fails,
see the Chapter 9, “Fixed-Point Advisor Reference”.

You can fix a failure using three different methods:

• Fix the failure by following the instructions in the Analysis Result box. Use
this method to fix failures individually.

• Fix the failure using the Action box. Use this method to automatically fix
all failures. See “Automatically Fixing Failures” on page 5-3.

• Fix the failure using the Model Advisor Results Explorer. Use this method
to batch fix failures. See “Batch Fixing Failures” on page 5-4

Note A warning result is meant for your information. You can choose to fix
the reported issue, or to move on to the next task.

Automatically Fixing Failures
You can automatically fix failures using the Action box. The action box applies
all of the recommended actions listed in the Analysis Result box.

5-3

5 Fixed-Point Advisor

Caution You should review the Analysis Result box prior to automatically
fixing failures to ensure that you want to apply all of the recommended
actions.

Automatically fix all failures within a task using the following steps:

1 In the Action box, click Modify All.

The Action Result box displays the a table of changes.

2 To verify that the task now passes, in the Analysis box, click Run This
Task.

Batch Fixing Failures
If a task fails and you want to explore the results and make batch changes,
use the following steps.

1 In the Analysis box, click Explore Result.

The Model Advisor Result Explorer dialog box opens.

2 Use the Model Advisor Result Explorer to modify block parameters.

3 When you have finished making changes, in the Fixed-Point Advisor dialog
box, click Run This Task to see if the changes you made results in the
task passing. Continue fixing failures and rerunning the task until the
task passes.

5-4

Tutorial: Converting a Model from Floating- to Fixed-Point

Tutorial: Converting a Model from Floating- to Fixed-Point

In this section...

“About This Tutorial” on page 5-5

“Starting the Fixed-Point Advisor” on page 5-5

“Prepare Model for Conversion” on page 5-6

“Prepare for Data Typing and Scaling” on page 5-15

“Perform Data Typing and Scaling” on page 5-18

“Prepare for Code Generation” on page 5-21

About This Tutorial
This tutorial steps you through using the Fixed-Point Advisor to convert
fxpdemo_fpa from using floating-point data types to using fixed-point data
types. This tutorial shows you how to use the Fixed-Point Advisor to:

• Set model-wide configuration options.

• Set block-specific parameters.

• Set the initial scaling for the model.

• Validate the initial scaling against the floating-point model.

For more information about a task, see the Chapter 9, “Fixed-Point Advisor
Reference”.

Starting the Fixed-Point Advisor

1 Open the model: fxpdemo_fpa.mdl.

5-5

5 Fixed-Point Advisor

2 To start the Fixed-Point Advisor, right-click Controller System and select
Fixed-Point > Fixed-Point Advisor from the subsystem context menu.

The Fixed-Point Advisor opens for the subsystem Controller System.

Prepare Model for Conversion
This folder contains tasks for validating model-wide settings and creating
reference simulation data.

5-6

Tutorial: Converting a Model from Floating- to Fixed-Point

1 In the Task Hierarchy pane, right-click the Prepare Model for
Conversion folder and select Run to Failure from the folder context
menu.

2 The first task, Verify model simulation settings runs. This task
validates that the model logging options are consistent with fixed-point
conversion goals, ensuring that fixed-point data can be logged in
downstream tasks.

A waitbar appears while the task runs. When the run is complete, the
result shows the task failed. Information about the failure is displayed
in the Analysis Result box.

5-7

5 Fixed-Point Advisor

3 To fix the failure, in the Action box click Modify All.

The Modify All action configures the model to the settings recommended
in the Analysis Result. The Action Result box displays a table of changes.

Caution You should review the Analysis Result box prior to automatically
fixing failures to ensure that you want to apply all of the recommended
actions.

5-8

Tutorial: Converting a Model from Floating- to Fixed-Point

4 Click Run This Task.

Running the task after using the Modify All action verifies that you made
the necessary changes. The Analysis Result box updates to display a passed
result. When a task passes, the Analysis Result box displays information
about why the task passes.

5 Right-click Verify model simulation settings and select Continue from
the task context menu.

The Fixed-Point Advisor continues running the tasks in the folder from
where you left off.

6 Address unsupported blocks runs. This task identifies blocks that do not
support fixed-point data types and therefore cannot be converted. If at all
possible, you must replace these blocks with Simulink® built-in blocks that
do support fixed-point data types. If a replacement block is not available,
you can isolate the unsupported block with Data Type Conversion blocks.

5-9

5 Fixed-Point Advisor

The task fails because the model has blocks that do not support fixed-point
data types.

7 Fix the failure:

a Insert Data Type Conversion blocks following the instructions in the
Analysis Result box.

b Rerun the task. A warning is displayed that the TrigFcn block is
unsupported, however, you just isolated this block with the Data Type
Conversion blocks, and therefore it is taken care of. Continue the run to
failure.

8 Verify update diagram status runs. Your model must be able to
successfully complete an update diagram action to run the checks in the
Fixed-Point Advisor.

The task passes.

9 Set up signal logging runs. You must specify at least one signal for the
Fixed-Point Advisor to use for analysis and comparison in downstream
checks. You should log, at minimum, the unique input and output signals.

The task fails because signal logging is not specified for any signals.

10 Fix the failure using the Model Advisor Result Explorer:

5-10

Tutorial: Converting a Model from Floating- to Fixed-Point

a Click the Explore Result button.

5-11

5 Fixed-Point Advisor

The Model Advisor Result Explorer opens.

b Select the signals you want to log and select the EnableLogging check
box.

5-12

Tutorial: Converting a Model from Floating- to Fixed-Point

Tip

• The menus at the top of the Model Advisor Result Explorer allow you
to change the information displayed in the center pane.

• You can edit properties in the Model Advisor Result Explorer using
any of the techniques described in “Changing Property Values” in
the Simulink documentation. This includes selecting and changing
multiple properties at one time.

• When you update a property value in the center pane, the Signal
Properties (right) pane updates to contain the same information.

For this tutorial, log the signals connected to the Inport and Outport
blocks:

• Ctr_in

• Ctr_out

• Sin_out

a In the Fixed-Point Advisor dialog box, click Run This Task.

The task passes because signal logging is enabled for at least one signal.

11 Continue running to failure. Create simulation reference data runs.
The Fixed-Point Advisor simulates the model using the current solver
settings, and creates and archives reference signal data to use for analysis
and comparison in downstream checks.

Tip If the simulation is set up to have a long simulation time, after
starting this task, you can stop the simulation by selecting the waitbar and
then pressing Ctrl+C. This allows you to change the simulation time and
continue without having to wait for the long simulation to complete.

The task passes.

5-13

5 Fixed-Point Advisor

12 Verify hardware selection runs. This task identifies the hardware device
information in the Hardware Implementation pane of the Configuration
Parameters dialog box.

The task fails because the Device vendor and Device type parameters in
the Configuration Parameters > Hardware Implementation dialog
are not specified.

13 Fix the failure:

a Click the Hardware Implementation Device settings link.

The Configuration Parameters dialog box opens.

b In the Configuration Parameters dialog box change:

• Device vendor to Generic

• Device type to 32 bit Embedded Processor

c Click OK to apply the settings.

The changes are applied and the Configuration Parameters dialog box
closes.

14 In the Fixed-Point Advisor dialog box, rerun the task.

The task passes and displays the current device type and vendor.

15 Continue running to failure. Check model configuration data validity
diagnostic parameters settings runs. This task verifies that the
Configuration Parameters > Diagnostics > Data Validity parameters
are set to warning. If these parameters are set to error, the model update
diagram action fails in downstream checks.

The task passes.

16 Implement logic signals as Boolean data runs. This task verifies that
the Configuration Parameters > Optimization > Implement logic
signals as boolean data (vs. double) check box is selected. If the check
box is cleared, the code generated in downstream checks is not optimized.

The task passes.

5-14

Tutorial: Converting a Model from Floating- to Fixed-Point

17 Check for proper bus usage runs. This task identifies:

• Mux blocks that are used as bus creators

• Bus signals treated as vectors in the top-level model

The task passes.

The run to failure action has completed for the Prepare Model for
Conversion folder. At this point you can review the results report found at
the folder level, or continue to the next folder.

Prepare for Data Typing and Scaling
This folder contains tasks that set the block configuration options and set
output minimum and maximum values for blocks. The block settings from
this task simplify the initial scaling. The optimal block configuration is
achieved in later stages. The tasks in this folder prepare the model for scaling
in “Perform Data Typing and Scaling” on page 5-18.

1 Right-click Prepare for Data Typing and Scaling and select Run to
Failure.

The Fixed-Point Advisor runs the Remove output data type inheritance
task. This task identifies blocks with the Output data type property set to
Inherit. Inherited data types might lead to data type propagation errors.

The task fails because some blocks in the model have inherited output
data types.

2 Fix the failure using the Modify All button to explicitly configure the
output data types to the recommended values, and rerun the task.

The task passes.

3 Continue running to failure. Relax input data type settings runs. This
task identifies blocks with input data type constraints that might lead to
data type propagation errors.

The task passes because all blocks have flexible input data types.

5-15

5 Fixed-Point Advisor

4 Verify Stateflow charts that have strong data typing with Simulink
runs. This task verifies that all Stateflow® charts are configured to have
strong data typing with Simulink I/O.

The task passes because the model does not have any Stateflow charts.

5 Specify block minimum and maximum values runs. You must specify
block output and parameter minimum and maximum values for, at
minimum, the Inport blocks in the system. You can specify the minimum
and maximum values for any block in this step. Typically, they are
determined during the design process based on the system you are creating.

The task fails because you have not specified any minimum and maximum
values.

6 Fix the failure by specifying minimum and maximum values for Inport
blocks:

a Click the Explore Result button.

5-16

Tutorial: Converting a Model from Floating- to Fixed-Point

The Model Advisor Result Explorer opens, displaying the Inport blocks
that do not have an output minimum and maximum specified.

b In the center pane, select Ctr_in. For the purpose of this tutorial, you
want to specify the output minimum and maximum values for this block.
Set OutMin to -5 and set OutMax to 5.

c In the Fixed-Point Advisor, rerun the task.

The task passes because minimum and maximum values are specified
for all Inport blocks.

d For the purpose of this tutorial, do not specify other minimum and
maximum values for other blocks.

The run to failure action has completed for the Prepare for Data Typing
and Scaling folder. At this point you can review the results report found at
the folder level, or continue to the next folder.

5-17

5 Fixed-Point Advisor

Perform Data Typing and Scaling
This folder contains tasks that assist you in specifying data type information
and proposing initial scaling for all blocks.

The Fixed-Point Advisor computes recommended data types and scaling based
on the following rules and rationales

• If the object has a fixed-point data type, and minimum and maximum
values are available, the Fixed-Point Advisor keeps the current word length
and covers the minimum and maximum range without overflow. Overflow
is not possible, but there might be precision loss.

• If the object has a fixed-point data type, and minimum and maximum
values are not available, the Fixed-Point Advisor keeps the current word
length and precision with a potential for overflow.

• If the object has a floating-point data type and minimum and maximum
values are available, the Fixed-Point Advisor uses the default word length
and covers the minimum and maximum range without overflow.

• If the object has a floating-point data type and minimum and maximum
values are not available, the Fixed-Point Advisor uses the default data type
as specified by the input parameters. It is not possible to report better
scaling, and the potential for overflow is unknown.

1 For the purpose of this tutorial, the tasks in the Perform Data Typing
and Scaling folder are run one at a time.

Select and run Propose scaling for Inport blocks. This task requires
you to choose the fixed-point data type for Inport blocks that currently have
floating-point data types. The Fixed-Point Advisor uses the type provided
in the Default Inport data type menu with the output minimum and
maximum values to provide recommended scaling for Inport blocks.

The task fails because you have not specified a Default Inport data type.

2 Fix the failure by specifying int16 in the Default Inport data type
menu, and rerun the task.

The result is a warning because you do not have fixed-point data type
scaling for all Inport blocks. The Analysis Result box is updated with
recommended fixed-point data type scaling for Inport blocks. You can

5-18

Tutorial: Converting a Model from Floating- to Fixed-Point

apply the recommendations by clicking the Modify All button, or use the
Model Advisor Result Explorer dialog to manually enter fixed-point data
type scaling.

3 Fix the failure by applying the recommendations using the Modify All
button and rerun the task.

The task passes.

4 Select Propose scaling for Constant blocks and specify int16 for the
Constant data type menu.

This task requires you to choose the default data type for Constant blocks.
The Fixed-Point Advisor uses the type provided in the Constant data
type menu with either the output minimum and maximum or the Constant
block values to provide recommended scaling for Constant blocks.

5 Run the task.

The task passes because you do not have Constant blocks in the model.

6 Select Propose scaling for blocks and specify int16 in the Output data
type menu. In the Accumulator data type and Product output data
type menus, specify int32.

This task requires you to choose the fixed-point data type scaling for
nonsource Simulink blocks that have floating-point data types. The
Fixed-Point Advisor uses the fixed-point data types provided in the Input
Parameters menus with either the output or simulation minimum and
maximum values to provide recommended scaling.

7 Run the task.

The result is a warning because not all blocks have fixed-point data type
scaling.

8 Fix the failure by applying all reported recommendations using the Modify
All button and rerun the task.

The task passes.

5-19

5 Fixed-Point Advisor

9 Select and run Resolve scaling conflicts. This task resolves scaling
conflicts introduced in previous tasks.

The task passes because no scaling conflicts were introduced in previous
tasks.

10 Select and run Summarize data types. This task summarizes the data
types used in the system. The Analysis Result box displays the number of:

• Floating-point data types

• Integer word lengths less than or equal to the native word size

• Integer word lengths greater than the native word size

The result is a warning because all signals are not fixed-point data types.

11 Select Propose scaling for parameters and specify int32 in the
Parameter data type menu.

This task requires you to choose the default fixed-point data type scaling
for block parameters and Stateflow parameters and constants that have
floating-point data types. The Fixed-Point Advisor uses the fixed-point data
types provided in the Parameter data type menu with either the output
or simulation minimum and maximum values to provide recommended
scaling.

12 Run the task.

The task passes because the block parameters or Stateflow constants and
parameters do not require a change in scaling.

13 Select and run Check for numerical errors. This task summarizes
simulation numerical errors.

The task passes because there are no numerical errors.

14 Select and run Analyze logged signals. This task summarizes the
differences between current simulation data and the reference data
archived in “Create simulation reference data” on page 9-12.

The task passes. You can view the differences by clicking the View Results
link in the Analysis Result box.

5-20

Tutorial: Converting a Model from Floating- to Fixed-Point

You have completed the tasks in the Perform Data Typing and Scaling
folder. At this point you can review the results report found at the folder
level, or continue to the next folder.

Prepare for Code Generation
This folder contains tasks that assist you in identifying settings that might
lead to nonoptimal results in code generation

1 For the purpose of this tutorial, the tasks in the Prepare for Code
Generation folder are run one at a time.

Select and run Disable signal logging. This task disables unnecessary
signal logging to avoid declaring extra signal memory in generated code.

The result is a warning because there are signals that are logged.

2 Fix the warning using the Modify All button to disable signal logging
on all signals and rerun the task.

The task passes.

3 Select and run Identify blocks that generate expensive saturation
and rounding code. This task optimizes the code to eliminate
unnecessary saturation and rounding.

The result is a warning because there are settings that can result in
nonoptimized code.

4 Fix the failure conditions by following the instructions in the Analysis
Result box. Rerun the task.

The task passes.

5 Select and run Identify questionable fixed-point operations. This
task identifies fixed-point operations that can lead to nonoptimal results.

The task results in a warning because some of the decisions made in
earlier steps to make the initial scaling easier can result in less efficient
code. For example, in Prepare for Data Typing and Scaling > Relax
input data type settings, you use different data types for Product and
Sum blocks. This results in less efficient code due to shifting. You need to

5-21

5 Fixed-Point Advisor

decide whether the scaling that you set is required, or if you can apply the
recommended actions and make your code more efficient.

6 View the recommend actions in the Analysis Result box to see the types
of conditions causing the warning.

You have completed the tasks in the Prepare for Code Generation folder.
This completes the tutorial. At this point you can review the results report
found at the folder level.

5-22

6

Fixed-Point Tool

Overview of the Fixed-Point Tool
(p. 6-2)

Introduces the Fixed-Point Tool

Working with the Fixed-Point Tool
(p. 6-5)

Describes a general workflow for
using the Fixed-Point Tool

Introduction to the Tutorial (p. 6-12) Introduces the fxpdemo_feedback
model used in the tutorial

Tutorial: Feedback Controller
(p. 6-18)

Provides a step-by-step tutorial on
using the Fixed-Point Tool to scale
fixed-point data types in a model

6 Fixed-Point Tool

Overview of the Fixed-Point Tool

In this section...

“Introduction to the Fixed-Point Tool” on page 6-2

“Opening the Fixed-Point Tool” on page 6-2

“Understanding the Interface” on page 6-3

Introduction to the Fixed-Point Tool
The Fixed-Point Tool is a graphical user interface that automates the task
of specifying scaling for fixed-point data types in a model. The tool collects
range data for model objects, either from design minimum and maximum
values that objects specify explicitly, or from logged minimum and maximum
values that occur during simulation. Based on these values, the tool proposes
fixed-point scaling that maximizes precision and covers the range. The tool
allows you to review the scaling proposals and then apply them selectively to
objects in your model.

Opening the Fixed-Point Tool
Use any of the following methods to open the Fixed-Point Tool:

• From the Simulink® Tools menu, select Fixed-Point > Fixed-Point Tool.

• From a model’s context (right-click) menu, select Fixed-Point Tool.

• From a subsystem’s context (right-click) menu, select
Fixed-Point > Fixed-Point Tool.

Alternatively, you can use the fxptdlg function to open the tool
programmatically. See fxptdlg in the Simulink Reference for more
information.

6-2

Overview of the Fixed-Point Tool

Understanding the Interface
When you first open the Fixed-Point Tool, it appears as shown here.

6-3

6 Fixed-Point Tool

The Fixed-Point Tool contains the following components:

• Model Hierarchy pane — Displays a tree-structured view of the Simulink
model hierarchy.

• Contents pane — Displays a tabular view of objects that log fixed-point
data in a system or subsystem.

• Dialog pane — Displays parameters for specifying particular attributes of
a system or subsystem, such as its data type override and logging mode.

• Main toolbar — Provides buttons that execute commonly used Fixed-Point
Tool commands.

For more information about each of these components, see the documentation
for the fxptdlg function in the Simulink Reference.

6-4

Working with the Fixed-Point Tool

Working with the Fixed-Point Tool

In this section...

“Fixed-Point Tool Workflow” on page 6-5

“Proposing Scaling” on page 6-5

“Reviewing Scaling Proposals” on page 6-6

“Applying Scaling” on page 6-11

Fixed-Point Tool Workflow
In general, you perform the following steps when using the Fixed-Point Tool
to scale fixed-point data types in a model:

Step Description See...

1 Collect range data, i.e., minimum
and maximum values that model
objects either specify explicitly or
generate during simulation, and
propose fixed-point scaling.

“Proposing Scaling” on page 6-5

2 Use the Autoscale Information
dialog to review the scaling
proposals.

“Reviewing Scaling Proposals”
on page 6-6

3 Apply the scaling proposals
selectively to model objects.

“Applying Scaling” on page 6-11

Proposing Scaling
The Fixed-Point Tool generates scaling proposals for model objects that specify
fixed-point data types. However, you can control whether a model object is
subject to proposals by locking its scaling. If an object’s Lock output scaling
against changes by the autoscaling tool parameter is selected, the tool
refrains from proposing scaling for that object.

When generating scaling proposals, the tool collects the following types of
range data for model objects:

6-5

6 Fixed-Point Tool

• Design minimum or maximum values — You specify a design range for
model objects using parameters typically titled Output minimum and
Output maximum. See “Blocks That Allow Signal Range Specification” in
Using Simulink® for a list of blocks that permit you to specify these values.

• Simulation minimum or maximum values — When simulating a system
whose Logging mode parameter specifies Minimums, maximums and
overflows, the Fixed-Point Tool logs the minimum and maximum values
generated by model objects. For more information about the Logging
mode parameter, see the documentation for the fxptdlg function in the
Simulink Reference.

The Fixed-Point Tool uses available range data to calculate scaling proposals
according to the following rules:

• Design minimum and maximum values take precedence over the
simulation range.

• The tool observes the simulation range only when the Use SimMin/Max
if DesignMin/Max are not available option is selected. Otherwise, the
tool ignores the simulation range.

Click the Propose Fraction Lengths button to generate scaling
proposals for objects in your model. However, if you plan to scale fixed-point
data types using simulation minimum and maximum values, you must first
simulate the system to log its simulation range. See “Tutorial: Feedback
Controller” on page 6-18 for an example that demonstrates how to scale
fixed-point data types using only simulation range data.

Note The Fixed-Point Tool does not alter your model when it proposes
scaling.

Reviewing Scaling Proposals
The Fixed-Point Tool lists its scaling proposals in the Contents pane under
the ProposedDT column. The tool alerts you to potential scaling issues for
each object in the list by displaying a green, yellow, or red icon, as shown here:

6-6

Working with the Fixed-Point Tool

The proposed scaling poses no issues for this object.

The proposed scaling poses potential issues for this object.

The proposed scaling will introduce data type errors if applied to this
object.

You can review each scaling proposal using the Autoscale Information dialog,
which displays the rationale underlying the proposed scaling. Also, this dialog
describes potential issues or errors, and it suggests methods for resolving
them. To open the dialog:

1 In the Contents pane, select an object that has proposed scaling.

2 Click the Autoscale Information button .

The dialog appears as shown here.

6-7

6 Fixed-Point Tool

The sections that follow describe the information that the dialog displays.

Proposed Data Type Summary
This section describes a scaling proposal in terms of how it differs from the
object’s current data type. For cases when the Fixed-Point Tool does not
propose scaling, this section provides an explanation.

6-8

Working with the Fixed-Point Tool

Needs Attention
This section lists potential issues and errors associated with scaling proposals.
It displays the following icons to differentiate warnings from errors.

Indicates a warning message.

Indicates an error message.

Not only does this section describe such issues, but also it suggests methods
for resolving them.

Shared Data Type Summary
This section notifies you when data type requirements associated with other
model objects impact the data type of the selected object. In this case, the
dialog provides a hyperlink that you can click to highlight those items in the
model. To eliminate such highlighting, from the model’s View menu, select
Remove Highlighting.

Data Type Details
This section provides a table that lists a model object’s attributes that
influence its scaling proposal.

Item Description

Currently
Specified Data
Type

Data type that an object currently specifies.

Proposed Data
Type

Data type that the Fixed-Point Tool proposes for this
object.

Proposed
Representable
Maximum

Maximum value that results from the proposed data
type.

Design Maximum Design maximum value that an object specifies
using, e.g., its Output maximum parameter.

Simulation
Maximum

Maximum value that occurs during simulation.

6-9

6 Fixed-Point Tool

Item Description

Simulation
Minimum

Minimum value that occurs during simulation.

Design Minimum Design minimum value that an object specifies using,
e.g., its Output minimum parameter.

Proposed
Representable
Minimum

Minimum value that results from the proposed data
type.

The table also includes a column titled Percent Proposed Representable.
This column indicates the percentage of the proposed representable range
that each value covers. Overflows occur when values lie outside this range.

Shared Values. When proposing scaling, the Fixed-Point Tool attempts to
satisfy data type requirements that model objects impose on one another. For
example, the Sum block provides an option that requires all of its inputs to
have the same data type. Consequently, the table might also list attributes of
other model objects that impact the scaling proposal for the selected object. In
such cases, the table displays the following types of shared values:

• Initial Values

Some model objects provide parameters that allow you to specify the
initial values of their signals. For example, the Constant block includes a
Constant value parameter that initializes the block output signal. The
Fixed-Point Tool uses initial values to propose scaling for model objects
whose design and simulation ranges are unavailable. When data type
dependencies exist, the tool considers how initial values impact the scaling
proposals for neighboring objects.

• Associated Parameters

Some model objects require the specification of numeric parameters to
compute the value of their outputs. For example, the Breakpoints and
Table data parameters of a Lookup Table (n-D) block specify values that
the block requires to perform its lookup operation and generate output.
Typically, blocks convert the data types of such parameters to match that
of their input or output signals. When proposing scaling, the Fixed-Point

6-10

Working with the Fixed-Point Tool

Tool considers how these “associated” parameter values impact the scaling
proposals for neighboring objects.

Applying Scaling
The Fixed-Point Tool allows you to apply its scaling proposals selectively to
objects in your model. Use the Accept check box in the Contents pane to
specify the scaling proposals that you want to assign to model objects. The
check box indicates the status of a proposal as follows:

The Fixed-Point Tool will apply the proposed scaling to this object. By
default, the tool selects the Accept check box when a scaling proposal
differs from the object’s current scaling.

The Fixed-Point Tool will ignore the proposed scaling and leave the
current scaling intact for this object.

No scaling proposal exists for this object. This occurs, for example,
when the object specifies a data type inheritance rule or has its scaling
locked.

Tip The Fixed-Point Tool enables you to customize its scaling proposals
before applying them to your model. To do so, in the Contents pane, click a
ProposedDT cell and edit the data type expression. See documentation for
the fixdt function for information about specifying fixed-point data types.

To apply scaling proposals to objects in your model:

1 In the Contents pane, select the Accept check box associated with scaling
proposals that you want to apply to model objects.

2 Click the Apply Accepted Fraction Lengths button .

The Fixed-Point Tool replaces the fixed-point scaling of model objects with
scaling proposals whose Accept check box is selected.

6-11

6 Fixed-Point Tool

Introduction to the Tutorial

In this section...

“Opening the Demo Model” on page 6-12

“About the Demo Model” on page 6-13

“Simulation Setup” on page 6-14

“Idealized Feedback Design” on page 6-14

“Digital Controller Realization” on page 6-15

Opening the Demo Model
Open the Simulink® model of the feedback design by starting the Help
browser, clicking the Demos tab, and selecting “Scaling a Fixed-Point Control
Design” from the list of Simulink® Fixed Point™ demos. Alternatively, you can
access the model directly by typing its name at the MATLAB® command line:

fxpdemo_feedback

The feedback design model is shown here.

6-12

Introduction to the Tutorial

About the Demo Model
The Simulink model of the feedback design consists of the following blocks
and subsystems:

• Reference

This Signal Generator block generates a continuous-time reference signal.
It is configured to output a square wave.

• Sum

This Sum block subtracts the plant output from the reference signal.

• ZOH

The Zero-Order Hold block samples and holds the continuous signal. This
block is configured so that it quantizes the signal in time by 0.01 seconds.

• Analog to Digital Interface

The analog to digital (A/D) interface consists of a Data Type Conversion
block that converts a double to a fixed-point data type. It represents any
hardware that digitizes the amplitude of the analog input signal. In the
real world, its characteristics are fixed.

• Controller

The digital controller is a subsystem that represents the software running
on the hardware target. Refer to “Digital Controller Realization” on page
6-15.

• Digital to Analog Interface

The digital to analog (D/A) interface consists of a Data Type Conversion
block that converts a fixed-point data type into a double. It represents any
hardware that converts a digitized signal into an analog signal. In the real
world, its characteristics are fixed.

• Analog Plant

The analog plant is described by a transfer function, and is controlled by
the digital controller. In the real world, its characteristics are fixed.

• Scope

The model includes a Scope block that displays the plant output signal.

6-13

6 Fixed-Point Tool

Simulation Setup
To set up this kind of fixed-point feedback controller simulation, typically you
perform the following steps:

1 Identify all design components.

In the real world, there are design components with fixed characteristics
(the hardware) and design components with characteristics that you
can change (the software). In this feedback design, the main hardware
components are the A/D hardware, the D/A hardware, and the analog plant.
The main software component is the digital controller.

2 Develop a theoretical model of the plant and controller.

For the feedback design used in this tutorial, the plant is characterized by
a transfer function. The characteristics of the plant are unimportant for
this tutorial, and are not discussed.

The digital controller model used in this tutorial is described by a z-domain
transfer function and is implemented using a direct-form realization.

3 Evaluate the behavior of the plant and controller.

You evaluate the behavior of the plant and the controller with a Bode plot.
This evaluation is idealized, because all numbers, operations, and states
are double-precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and Simulink
Fixed Point software. Of course, in a simulation environment, you can treat
all components (software and hardware) as though their characteristics
are not fixed.

Idealized Feedback Design
Open loop (controller and plant) and plant-only Bode plots for the “Scaling
a Fixed-Point Control Design” demo are shown in the following figure. The
open loop Bode plot results from a digital controller described in the idealized
world of continuous time, double-precision coefficients, storage of states, and
math operations.

6-14

Introduction to the Tutorial

10
−1

10
0

10
1

10
2

10
3

10
−5

10
0

Bode Plots: Plant Only (dashed) and Open Loop (solid)

Freq (rad/sec)

M
ag

ni
tu

de

10
−1

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

Freq (rad/sec)

P
ha

se

The plant and controller design criteria are not important for the purposes of
this tutorial. The Bode plots were created using workspace variables produced
by an M-file script named preload_feedback.m.

Digital Controller Realization
In this simulation, the digital controller is implemented using the fixed-point
direct form realization shown in the following diagram. The hardware target
is a 16-bit processor. Variables and coefficients are generally represented
using 16 bits, especially if these quantities are stored in ROM or global RAM.
Use of 32-bit numbers is limited to temporary variables that exist briefly in
CPU registers or in a stack.

6-15

6 Fixed-Point Tool

The realization consists of these blocks:

• Up Cast

Up Cast is a Data Type Conversion block that connects the A/D hardware
with the digital controller. It pads the output word of the A/D hardware
with trailing zeros to a 16-bit number (the base data type).

• Numerator Terms and Denominator Terms

Each of these Discrete FIR Filter blocks represents a weighted sum carried
out in the CPU target. The word size and precision used in the calculations
reflect those of the accumulator. Numerator Terms multiplies and
accumulates the most recent inputs with the FIR numerator coefficients.
Denominator Terms multiples and accumulates the most recent delayed
outputs with the FIR denominator coefficients. The coefficients are stored
in ROM using the base data type. The most recent inputs are stored in
global RAM using the base data type.

• Combine Terms

6-16

Introduction to the Tutorial

Combine Terms is a Sum block that represents the accumulator in the
CPU. Its word size and precision are twice that of the RAM (double bits).

• Down Cast

Down Cast is a Data Type Conversion block that represents taking the
number from the CPU and storing it in RAM. The word size and precision
are reduced to half that of the accumulator when converted back to the
base data type.

• Prev Out

Prev Out is a Unit Delay block that delays the feedback signal in memory
by one sample period. The signals are stored in global RAM using the
base data type.

Direct Form Realization
The controller directly implements this equation,

where

• u(k - 1) represents the input from the previous time step.

• y(k) represents the current output, and y(k - 1) represents the output from
the previous time step.

• bi represents the FIR numerator coefficients.

• ai represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the
most recent inputs and numerator coefficients in the accumulator. The second
summation in y(k) represents multiplication and accumulation of the most
recent outputs and denominator coefficients in the accumulator. Because the
FIR coefficients, inputs, and outputs are all represented by 16-bit numbers
(the base data type), any multiplication involving these numbers produces a
32-bit output (the accumulator data type).

6-17

6 Fixed-Point Tool

Tutorial: Feedback Controller

In this section...

“Before You Begin” on page 6-18

“Initial Guess at Scaling” on page 6-19

“Data Type Override” on page 6-20

“Automatic Scaling” on page 6-24

Before You Begin
The tutorial that follows shows you how to use the Fixed-Point Tool to refine
the scaling of fixed-point data types associated with a feedback controller
model (see “Introduction to the Tutorial” on page 6-12). Although the tool
enables multiple workflows for converting a digital controller described in
ideal double-precision numbers to one realized in fixed-point numbers, this
tutorial demonstrates the following approach:

1 “Initial Guess at Scaling” on page 6-19. Run an initial “proof of concept”
simulation using a reasonable guess at the fixed-point word size and
scaling. This task illustrates how difficult it is to guess the best scaling.

2 “Data Type Override” on page 6-20. Perform a global override of the
fixed-point data types using double-precision numbers. The Simulink®

software logs the simulation results to the MATLAB® workspace, and the
Fixed-Point Tool displays them.

3 “Automatic Scaling” on page 6-24. Perform the automatic scaling procedure,
which uses the double-precision simulation results to propose fixed-point
scaling for appropriately configured blocks. The Fixed-Point Tool allows
you to accept and apply the scaling proposals selectively. Afterward, you
determine the quality of the results by examining the input and output
of the model’s analog plant.

To begin, open both the fxpdemo_feedback model and the Fixed-Point Tool.

6-18

Tutorial: Feedback Controller

Initial Guess at Scaling
Initial guesses for the scaling of each block are already specified in each block
mask in the model. This task is included only to illustrate the difficulty of
guessing the best scaling.

1 In the Fixed-Point Tool, click the Start button .

The Simulink software simulates the fxpdemo_feedback model. Afterward,
the Fixed-Point Tool displays in its Contents pane the simulation results
for each block that logged fixed-point data. The tool stores the results as an
active run, denoted by the Active label in the Run column. The OvfSat
column reveals that the Up Cast block saturated 23 times, which indicates
a poor guess for its scaling.

2 In the Contents pane of the Fixed-Point Tool, select the Transfer Fcn block

named Analog Plant and then click the Time Series Plot button .

6-19

6 Fixed-Point Tool

The Fixed-Point Tool plots the signal associated with the plant output.

The preceding plot of the plant output signal reflects the initial guess at
scaling. The Bode plot design sought to produce a well-behaved linear
response for the closed-loop system. Clearly, the response is nonlinear.
Significant quantization effects cause the nonlinear features. An important
part of fixed-point design is finding a scaling that reduces quantization effects
to acceptable levels.

Data Type Override
Data type override mode enables you to perform a global override of the
fixed-point data types and scaling using double-precision numbers, thereby
avoiding quantization effects. The Fixed-Point Tool will use these simulation
results when performing automatic scaling to propose higher fidelity
fixed-point scaling.

1 In the Dialog pane of the Fixed-Point Tool:

6-20

Tutorial: Feedback Controller

• Click the Exchange Active and Reference results button. The tool
swaps the results that it stores as an active run with those that it stores
as a reference run. The existing results are now stored as a reference
run, denoted by the Reference label in the Run column, and the active
run is empty. This prevents the tool from overwriting the previous set of
results.

• Ensure that the Logging mode parameter for the fxpdemo_feedback
system specifies Minimums, maximums and overflows. This option
enables logging for all the model’s blocks that can log such data.

• Specify the Data type override parameter for the fxpdemo_feedback
system as True doubles. This option overrides all local data type
settings for the model’s subsystems.

The Fixed-Point Tool appears as follows.

6-21

6 Fixed-Point Tool

2 In the Fixed-Point Tool, click the Start button .

The Simulink software simulates the fxpdemo_feedback model in data
type override mode and stores the results as an active run. Afterward,
the Fixed-Point Tool displays in its Contents pane the active run results
along with those of the reference run that you generated previously (see
“Initial Guess at Scaling” on page 6-19). The SimDT (simulation data type)
column for the active run shows that the model’s blocks used a double
data type during simulation.

6-22

Tutorial: Feedback Controller

3 In the Contents pane of the Fixed-Point Tool, select the Transfer Fcn
block named Analog Plant that corresponds with either the active or the
reference run, and then click the Time Series Difference (A-R) Plot

button .

The Fixed-Point Tool plots both the active and reference versions of
the signal associated with the plant output (upper axes), and plots the
difference between the active and reference versions of that signal (lower
axes). Compare the ideal (double data type) plant output signal with its
fixed-point version.

6-23

6 Fixed-Point Tool

Automatic Scaling
Using the automatic scaling procedure, you can easily maximize the precision
of the output data type while spanning the full simulation range. For a
complex model, the absence of such a procedure can make achieving this goal
tedious and time consuming.

Note The Fixed-Point Tool yields meaningful autoscaling results when the
maximum and minimum simulation values cover the full intended operating
range of your design. See the autofixexp reference page for more information.

Perform automatic scaling for the Controller block. This block is a subsystem
that represents software running on the target, and it requires optimization.

1 In the Model Hierarchy pane of the Fixed-Point Tool, select the
Controller subsystem. In the Dialog pane, specify the Percent safety
margin parameter as 20.

The Percent safety margin parameter value multiplies the “raw”
simulation values by a factor of 1.2. Setting this parameter to a value
greater than 1 decreases the likelihood that an overflow will occur when
fixed-point data types are being used.

Because of the nonlinear effects of quantization, a fixed-point simulation
will produce results that are different from an idealized, doubles-based
simulation. Signals in a fixed-point simulation can cover a larger or
smaller range than in a doubles-based simulation. If the range increases
enough, overflows or saturations could occur. A safety margin decreases
the likelihood of this happening, but it might also decrease the precision of
the simulation.

2 In the Fixed-Point Tool, click the Propose fraction lengths button .

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

• Lock output scaling against changes by the autoscaling tool
parameter is not selected.

• Output data type parameter specifies a generalized fixed-point number.

6-24

Tutorial: Feedback Controller

The Fixed-Point Tool uses the minimum and maximum values stored in
the active run to propose each block’s scaling such that the precision is
maximized while the full range of simulation values is spanned. The tool
displays the proposed scaling in its Contents pane as shown here:

3 Review the scaling that the Fixed-Point Tool proposes. You can choose to
accept the scaling proposal for each block by selecting the corresponding
Accept check box in the Contents pane. By default, the Fixed-Point Tool
accepts all scaling proposals that differ from the current scaling. For this
example, ensure that the Accept check box associated with the active run
is selected for each of the Controller subsystem’s blocks.

4 In the Fixed-Point Tool, click the Apply accepted fraction lengths

button .

The Fixed-Point Tool applies to the Controller subsystem’s blocks the
scaling proposals that you accepted in the previous step.

5 In the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system. In the Dialog pane:

6-25

6 Fixed-Point Tool

• Click the Exchange Active and Reference results button. The tool
swaps the results that it stores as an active run with those that it
stores as a reference run. The simulation results corresponding to True
doubles override are now stored as a reference run. This prevents the
tool from overwriting the results that we want to retain.

• Specify the Data type override parameter as Use local settings.
This option enables each of the model’s subsystems to use its locally
specified data type settings.

6 In the Fixed-Point Tool, click the Start button .

The Simulink software simulates the fxpdemo_feedback model using
the new scaling that you applied in step 4. Afterward, the Fixed-Point
Tool displays in its Contents pane information about blocks that logged
fixed-point data. The SimDT (simulation data type) column for the active
run shows that the Controller subsystem’s blocks used fixed-point data
types with the new scaling.

6-26

Tutorial: Feedback Controller

7 In the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system. In the Contents pane, select the Transfer
Fcn block named Analog Plant that corresponds with either the active
or the reference run, and then click the Time Series Difference (A-R)

Plot button .

The Fixed-Point Tool plots the active and reference versions of the plant
output signal, as well as their difference. Compare the ideal plant output
signal (of data type double) in the reference run with its fixed-point version
in the active run.

6-27

6 Fixed-Point Tool

8 Optionally, you can zoom in to view the steady-state region with greater
detail. From the Tools menu of the figure window, select Zoom In and
then drag the cursor to draw a box around the area you want to view more
closely. For instance, the following figure shows a close-up view of a portion
of the previous plot.

Note that the plant output signal represented by the active run achieves a
steady state, but a small limit cycle is present because of poor A/D design.

6-28

7

Tutorial: Producing Lookup
Table Data

Overview (p. 7-2) Provides an overview of the topics
covered by the tutorial

Worst-Case Error for a Lookup Table
(p. 7-3)

Describes worst-case error for a
lookup table, and how to find it
using the fixpt_look1_func_plot
function

Creating Lookup Tables for a Sine
Function (p. 7-6)

Provides a step-by-step tutorial on
how to make lookup tables using the
fixpt_look1_func_approx function

Summary: Using the Lookup Table
Functions (p. 7-22)

Briefly summarizes conclusions
from the tutorial on how to use
fixpt_look1_func_plot and
fixpt_look1_func_approx to create
lookup tables

Effect of Spacing on Speed, Error,
and Memory Usage (p. 7-23)

Compares lookup tables with
differing spacing—uneven, even,
and power of two

7 Tutorial: Producing Lookup Table Data

Overview
A function lookup table is a method by which you can approximate a function
by a table with a finite number of points (X,Y). Function lookup tables
are essential to many fixed-point applications. The function you want to
approximate is called the ideal function. The X values of the lookup table
are called the breakpoints. You approximate the value of the ideal function
at a point by linearly interpolating between the two breakpoints closest
to the point.

In creating the points for a function lookup table, you generally want to
achieve one or both of the following goals:

• Minimize the worst-case error for a specified maximum number of
breakpoints

• Minimize the number of breakpoints for a specified maximum allowed error

This tutorial shows you how to create function lookup tables using the
function fixpt_look1_func_approx. You can optimize the lookup table to
minimize the number of data points, the error, or both. You can also restrict
the spacing of the breakpoints to be even or even powers of two to speed up
computations using the table.

This tutorial also explains how to use the function fixpt_look1_func_plot
to find the worst-case error of a lookup table and plot the errors at all points.

7-2

Worst-Case Error for a Lookup Table

Worst-Case Error for a Lookup Table

In this section...

“What Is Worst-Case Error for a Lookup Table?” on page 7-3

“Example: Square Root Function” on page 7-3

What Is Worst-Case Error for a Lookup Table?
The error at any point of a function lookup table is the absolute value of the
difference between the ideal function at the point and the corresponding Y
value found by linearly interpolating between the adjacent breakpoints. The
worst-case error, or maximum absolute error, of a lookup table is the maximum
absolute value of all errors in the interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of
the lookup table are 0, 0.25, and 1, then in a perfect implementation of the
lookup table, the worst-case error is 1/8 = 0.125, which occurs at the point 1/16
= 0.0625. In practice, the error could be greater, depending on the fixed-point
quantization and other factors.

The section that follows demonstrates how to use the function
fixpt_look1_func_plot to find the worst-case error of a lookup table for the
square root function.

Example: Square Root Function
This example shows how to use the function fixpt_look1_func_plot to find
the maximum absolute error for the simple lookup table whose breakpoints
are 0, 0.25, and 1. The corresponding Y data points of the lookup table, which
you find by taking the square roots of the breakpoints, are 0, 0.5, and 1.

To use the function fixpt_look1_func_plot, you need to define its
parameters first. To do so, type the following at the MATLAB® prompt:

funcstr = 'sqrt(x)'; %Define the square root function
xdata = [0;.25;1]; %Set the breakpoints
ydata = sqrt(xdata); %Find the square root of the breakpoints
xmin = 0; %Set the minimum breakpoint

7-3

7 Tutorial: Producing Lookup Table Data

xmax = 1; %Set the maximum breakpoint
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method

Next, type

errworst = fixpt_look1_func_plot(xdata,ydata,funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

This returns the worst-case error of the lookup table as the variable errworst:

errworst =
0.1250

It also generates the plots shown in the following figure. The upper box
(Outputs) displays a plot of the square root function with a plot of the
fixed-point lookup approximation underneath. The approximation is found by
linear interpolation between the breakpoints. The lower box (Absolute Error)
displays the errors at all points in the interval from 0 to 1. Notice that the
maximum absolute error occurs at 0.0625. The error at the breakpoints is 0.

7-4

Worst-Case Error for a Lookup Table

7-5

7 Tutorial: Producing Lookup Table Data

Creating Lookup Tables for a Sine Function

In this section...

“Introduction” on page 7-6

“Parameters for fixpt_look1_func_approx” on page 7-6

“Setting Function Parameters for the Lookup Table” on page 7-8

“Example: Using errmax with Unrestricted Spacing” on page 7-8

“Example: Using nptsmax with Unrestricted Spacing” on page 7-12

“Example: Using errmax with Even Spacing” on page 7-14

“Example: Using nptsmax with Even Spacing” on page 7-15

“Example: Using errmax with Power of Two Spacing” on page 7-16

“Example: Using nptsmax with Power of Two Spacing” on page 7-18

“Specifying Both errmax and nptsmax” on page 7-19

“Comparing the Examples” on page 7-20

Introduction
The sections that follow explain how to use the function
fixpt_look1_func_approx to create lookup tables. It gives
examples that show how to create lookup tables for the function sin(2πx) on
the interval from 0 to 0.25.

Parameters for fixpt_look1_func_approx
To use the function fixpt_look1_func_approx, you must first define its
parameters. The required parameters for the function are

• funcstr — Ideal function

• xmin — Minimum input of interest

• xmax — Maximum input of interest

• xdt — x data type

• xscale — x data scaling

7-6

Creating Lookup Tables for a Sine Function

• ydt — y data type

• yscale — y data scaling

• rndmeth — Rounding method

In addition there are three optional parameters:

• errmax — Maximum allowed error of the lookup table

• nptsmax — Maximum number of points of the lookup table

• spacing — Spacing allowed between breakpoints

You must use at least one of the parameters errmax and nptsmax. The next
section, “Setting Function Parameters for the Lookup Table” on page 7-8,
gives typical settings for these parameters.

Using Only errmax
If you use only the errmax parameter, without nptsmax, the function creates a
lookup table with the fewest points, for which the worst-case error is at most
errmax. See “Example: Using errmax with Unrestricted Spacing” on page 7-8.

Using Only nptsmax
If you use only the nptsmax parameter without errmax, the function creates a
lookup table with at most nptsmax points, which has the smallest worse case
error. See “Example: Using nptsmax with Unrestricted Spacing” on page 7-12.

The section “Specifying Both errmax and nptsmax” on page 7-19 describes
how the function behaves when you specify both errmax and nptsmax.

Spacing
You can use the optional spacing parameter to restrict the spacing between
breakpoints of the lookup table. The options are

• 'unrestricted' — Default.

• 'even' — Distance between any two adjacent breakpoints is the same.

• 'pow2' — Distance between any two adjacent breakpoints is the same
and the distance is a power of two.

7-7

7 Tutorial: Producing Lookup Table Data

The section “Restricting the Spacing” on page 7-13 and the examples that
follow it explain how to use the spacing parameter.

Setting Function Parameters for the Lookup Table
To do the examples in this section, you must first set parameter values for
the fixpt_look1_func_approx function. To do so, type the following at the
MATLAB® prompt:

funcstr = 'sin(2*pi*x)'; %Define the sine function
xmin = 0; %Set the minimum input of interest
xmax = 0.25; %Set the maximum input of interest
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method
errmax = 2^-10; %Set the maximum allowed error
nptsmax = 21; %Specify the maximum number of points

If you exit the MATLAB software after typing these commands, you must
retype them before trying any of the other examples in this section.

Example: Using errmax with Unrestricted Spacing
The first example shows how to create a lookup table that has the fewest
data points for a specified worst-case error, with unrestricted spacing. Before
trying the example, enter the same parameter values given in the section
“Setting Function Parameters for the Lookup Table” on page 7-8, if you have
not already done so in this MATLAB session.

You specify the maximum allowed error by typing

errmax = 2^-10;

Creating the Lookup Table
To create the lookup table, type

[xdata,ydata,errworst]=fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]);

7-8

Creating Lookup Tables for a Sine Function

Note that the nptsmax and spacing parameters are not specified.

7-9

7 Tutorial: Producing Lookup Table Data

The function returns three variables:

• xdata, the vector of breakpoints of the lookup table

• ydata, the vector found by applying ideal function sin(2πx) to xdata

• errworst, which specifies the maximum possible error in the lookup table

The value of errworst is less than or equal to the value of errmax.

You can find the number of X data points by typing

length(xdata)

ans =
16

This means that 16 points are required to approximate sin(2πx) to within the
tolerance specified by errmax.

You can display the maximum error by typing errworst. This returns

errworst =
9.7656e-004

Plotting the Results
You can plot the output of the function fixpt_look1_func_plot by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

The resulting plots are shown.

7-10

Creating Lookup Tables for a Sine Function

The upper plot shows the ideal function sin(2πx) and the fixed-point lookup
approximation between the breakpoints. In this example, the ideal function
and the approximation are so close together that the two graphs appear to
coincide. The lower plot displays the errors.

In this example, the Y data points, returned by the function
fixpt_look1_func_approx as ydata, are equal to the ideal function applied
to the points in xdata. However, you can define a different set of values for
ydata after running fixpt_look1_func_plot. This can sometimes reduce
the maximum error.

You can also change the values of xmin and xmax in order to evaluate the
lookup table on a subset of the original interval.

7-11

7 Tutorial: Producing Lookup Table Data

To find the new maximum error after changing ydata, xmin or xmax, type

errworst=fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax, ...
xdt,xscale,ydt,yscale,rndmeth)

Example: Using nptsmax with Unrestricted Spacing
The next example shows how to create a lookup table that minimizes the
worst-case error for a specified maximum number of data points, with
unrestricted spacing. Before starting the example, enter the same parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 7-8, if you have not already done so in this MATLAB session.

Setting the Number of Breakpoints
You specify the number of breakpoints in the lookup table by typing

nptsmax = 21;

Creating the Lookup Table
Next, type

[xdata,ydata,errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets, [], tell the function to ignore the parameter errmax,
which is not used in this example. Omitting errmax causes the function
fixpt_look1_func_approx to return a lookup table of size specified by
nptsmax, with the smallest worst-case error.

The function returns a vector xdata with 21 points. You can find the
maximum error for this set of points by typing errworst at the MATLAB
prompt. This returns

errworst =
5.1139e-004

Plotting the Results
To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...

7-12

Creating Lookup Tables for a Sine Function

xscale,ydt,yscale,rndmeth);

The resulting plots are shown.

Restricting the Spacing
In the previous two examples, the function fixpt_look1_func_approx
creates lookup tables with unrestricted spacing between the breakpoints. You
can restrict the spacing to improve the computational efficiency of the lookup
table, using the spacing parameter.

The options for spacing are

• 'unrestricted' — Default.

7-13

7 Tutorial: Producing Lookup Table Data

• 'even' — Distance between any two adjacent breakpoints is the same.

• 'pow2' — Distance between any two adjacent breakpoints is the same
and is a power of two.

Both power of two and even spacing increase the computational speed of
the lookup table and use less command read-only memory (ROM). However,
specifying either of the spacing restrictions along with errmax usually
requires more data points in the lookup table than does unrestricted spacing
to achieve the same degree of accuracy. The section “Effect of Spacing on
Speed, Error, and Memory Usage” on page 7-23 discusses the tradeoffs
between different spacing options.

Example: Using errmax with Even Spacing
The next example shows how to create a lookup table that has evenly spaced
breakpoints and a specified worst-case error. To try the example, you must
first enter the parameter values given in the section “Setting Function
Parameters for the Lookup Table” on page 7-8, if you have not already done
so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

You can find the number of points in the lookup table by typing
length(xdata):

ans =
20

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

This produces the following plots:

7-14

Creating Lookup Tables for a Sine Function

Example: Using nptsmax with Even Spacing
The next example shows how to create a lookup table that has evenly spaced
breakpoints and minimizes the worst-case error for a specified maximum
number of points. To try the example, you must first enter the parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 7-8, if you have not already done so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

7-15

7 Tutorial: Producing Lookup Table Data

The result requires 21 evenly spaced points to achieve a maximum absolute
error of 2^-10.2209.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

Example: Using errmax with Power of Two Spacing
The next example shows how to construct a lookup table that has power
of two spacing and a specified worst-case error. To try the example, you
must first enter the parameter values given in the section “Setting Function

7-16

Creating Lookup Tables for a Sine Function

Parameters for the Lookup Table” on page 7-8, if you have not already done
so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'pow2';
[xdata ydata errworst]=fixpt_look1_func_approx(funcstr,xmin, ...
xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

To find out how many points are in the lookup table, type

length(xdata)

ans =
33

This means that 33 points are required to achieve the worst-case error
specified by errmax. To verify that these points are evenly spaced, type

widths = diff(xdata)

This generates a vector whose entries are the differences between consecutive
points in xdata. Every entry of widths is 2-7.

To find the maximum error for the lookup table, type

errworst

errworst =
3.7209e-004

This is less than the value of errmax.

To plot the lookup table data along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

This displays the plots shown.

7-17

7 Tutorial: Producing Lookup Table Data

Example: Using nptsmax with Power of Two Spacing
The next example shows how to create a lookup table that has power of two
spacing and minimizes the worst-case error for a specified maximum number
of points. To try the example, you must first enter the parameter values given
in the section “Setting Function Parameters for the Lookup Table” on page
7-8, if you have not already done so in this MATLAB session:

spacing = 'pow2';
[xdata, errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 17 points to achieve a maximum absolute error of
2^-9.6267.

7-18

Creating Lookup Tables for a Sine Function

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

This produces the plots shown below:

Specifying Both errmax and nptsmax
If you include both the errmax and the nptsmax parameters, the function
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax
data points, whose worst-case error is at most errmax. If it can find a lookup
table meeting both conditions, it uses the following order of priority for
spacing:

7-19

7 Tutorial: Producing Lookup Table Data

1 Power of two

2 Even

3 Unrestricted

If the function cannot find any lookup table satisfying both conditions, it
ignores nptsmax and returns a lookup table with unrestricted spacing, whose
worst-case error is at most errmax. In this case, the function behaves the
same as if the nptsmax parameter were omitted.

Using the parameters described in the section “Setting Function Parameters
for the Lookup Table” on page 7-8, the following examples illustrate the
results of using different values for nptsmax when you enter

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,numptsmax);

The results for three different settings for numptsmax are as follows:

• numptsmax=33 — The function creates the lookup table with 33 points
having power of two spacing as in Example 3.

• numptsmax=21 — Because the errmax and numptsmax conditions cannot be
met with power of two spacing, the function creates the lookup table with
20 points having even spacing, as in Example 5.

• numptsmax=16 — Because the errmax and numptsmax conditions cannot be
met with either power of two or even spacing, the function creates the
lookup table with 16 points having unrestricted spacing, as in Example 1.

Comparing the Examples
The following table summarizes the results for the examples. Note that when
you specify errmax, even spacing requires more data points than unrestricted,
and power of two spacing requires more points than even spacing.

Example Options Spacing
Worst-Case
Error

Number of
Points in Table

1 errmax=2^-10 'unrestricted' 2^-10 16

2 nptsmax=21 'unrestricted' 2^-10.933 21

7-20

Creating Lookup Tables for a Sine Function

Example Options Spacing
Worst-Case
Error

Number of
Points in Table

3 errmax=2^-10 'even' 2^-10.0844 20

4 nptsmax=21 'even' 2^-10.2209 21

5 errmax=2^-10 'pow2' 2^-11.3921 33

6 nptsmax=21 'pow2' 2^-9.627 17

7-21

7 Tutorial: Producing Lookup Table Data

Summary: Using the Lookup Table Functions
The following summarizes how to use the lookup table approximation
functions:

1 Define

a The ideal function to be approximated

b The range, xmin to xmax, over which to find X and Y data

c The fixed-point implementation: data type, scaling, and rounding method

d The maximum acceptable error, the maximum number of points, and
the spacing

2 Run the fixpt_look1_func_approx function to generate X and Y data.

3 Use the fixpt_look1_func_plot function to plot the function and error
between the ideal and approximated functions using the selected X and Y
data, and to calculate the error and the number of points used.

4 Vary input criteria, such as errmax, nptsmax, and spacing, to produce sets
of X and Y data that generate functions with varying worst-case error,
number of points required, and spacing.

5 Compare results of the number of points required and maximum absolute
error from various runs to choose the best set of X and Y data.

7-22

Effect of Spacing on Speed, Error, and Memory Usage

Effect of Spacing on Speed, Error, and Memory Usage

In this section...

“Introduction” on page 7-23

“Data ROM Required” on page 7-24

“Determining Out-of-Range Inputs” on page 7-25

“Determining Input Location” on page 7-25

“Interpolation” on page 7-27

“Conclusion” on page 7-29

Introduction
The sections that follow compare implementations of lookup tables that
use breakpoints whose spacing is uneven, even, and power of two. This
comparison is valid only when the breakpoints are not tunable. If the
breakpoints can be tuned in the generated code, then all three cases generate
the same code. The comparison focuses on the amount of read-only memory
(ROM) used for data, the amount of ROM used for commands, and the speed
with which the commands are executed.

As a specific example, this comparison uses the demo fxpdemo_approx_sin.
There are three fixed-point lookup tables in this model. All three lookup
tables approximate the function sin(2*pi*u) over the first quadrant. All
three achieve a worst-case error of less than 2^-8. However, they have
different restrictions on their breakpoint spacing.

You can use the model fxpdemo_approx, which this demo opens, to generate
code with the Real-Time Workshop® product (Real-Time Workshop software
license required). The sections that follow present several segments of the
generated code. These segments of code are edited and arranged for clarity
and to emphasize key differences.

To open the demo, type at the MATLAB® prompt

fxpdemo_approx_sin

This opens the following model.

7-23

7 Tutorial: Producing Lookup Table Data

Data ROM Required
This section looks at the data ROM required by each of the three spacing
options.

Uneven Case
Uneven spacing requires both Y data points and breakpoints:

int16_T yuneven[8];
uint16_T xuneven[8];

The total bytes used is 32.

Even Case
Even spacing requires only Y data points:

int16_T yeven[10];

7-24

Effect of Spacing on Speed, Error, and Memory Usage

The total bytes used is 20. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most three values related to the breakpoints
are needed.

Power of Two Case
Power of two spacing requires only Y data points:

int16_T ypow2[17];

The total bytes used is 34. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most three values related to the breakpoints
are needed.

Determining Out-of-Range Inputs
In all three cases you have to guard against the possibility that the input is
less than the smallest breakpoint or greater than the biggest breakpoint.
There can be differences in how occurrences of these possibilities are handled.
However, the differences are generally minor and are normally not a key factor
in deciding to use one spacing method over another. The subsequent sections
assume that out-of-range inputs are impossible or have already been handled.

Determining Input Location
This section describes how the three fixed-point lookup tables determine
where the current input is relative to the breakpoints.

Uneven Case
Unevenly spaced breakpoints require a general-purpose algorithm such as a
binary search to determine where the input lies in relation to the breakpoints.
The following code provides an example:

iLeft = 0;
iRght = 7; /* number of breakpoints minus 1 */

while ((iRght - iLeft) > 1)
{

7-25

7 Tutorial: Producing Lookup Table Data

i = (iLeft + iRght) >> 1;

if (uAngle < xuneven[i])
{

iRght = i;
}
else
{

iLeft = i;
}

}

The while loop executes up to log2(N) times, where N is number of breakpoints.

Even Case
Evenly spaced breakpoints require only one step to determine where the input
lies in relation to the breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the
dividend would be (uAngle - SmallestBreakPoint). In this example, the
smallest breakpoint is zero, so the subtraction is optimized out.

Power of Two Case
Power of two spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2^8. The
smallest breakpoint is zero, so uAngle replaces the general case of (uAngle -
SmallestBreakPoint).

Comparison
To determine where the input is located with respect to the breakpoints, the
unevenly spaced case clearly requires much more code than the other two
cases. This code requires additional command ROM. This ROM penalty can
be reduced if many lookup tables share the binary search algorithm as a

7-26

Effect of Spacing on Speed, Error, and Memory Usage

function. Even if the code is shared, the number of clock cycles required to
determine the location of the input is much higher for the unevenly spaced
cases than the other two cases. If the code is shared, then function call
overhead decreases the speed of execution a little more.

In the evenly spaced case and the power of two spaced case, you can determine
the location of the input with a single line of code. The evenly spaced cased
uses a general integer division. The power of two case uses a shift instead
of general division because the divisor is an exact power of two. Without
knowing the specific processor to be used, you cannot be certain that a shift is
better than division.

Many processors can implement division with a single assembly language
instruction, so the code will be small. However, this instruction often takes
many clock cycles to complete. Quite a few processors do not provide a
division instruction. Division on these processors is implemented via repeated
subtractions. This is slow and requires a fair amount of machine code, but
this code can be shared.

Most processors provide a way to do logical and arithmetic shifts left and
right. A distinguishing difference is whether the processor can do N shifts in
one instruction (barrel shift) or requires N instructions that shift one bit at a
time. The barrel shift requires less code. Whether or not the barrel shift also
increases speed depends on the hardware that supports the operation.

The compiler can also complicate the comparison. In the previous example,
the command uAngle >> 8 essentially takes the upper 8 bits in a 16-bit word.
The compiler can detect this and replace the bit shifts with an instruction that
takes the bits directly. If the number of shifts is some other value, such as
7, this optimization would not occur.

Interpolation
In theory, you can calculate the interpolation with the following code:

y = (yData[iRght] - yData[iLeft]) * (u - xData[iLeft]) ...
/ (xData[iRght] - xData[iLeft]) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between
neighboring breakpoints. If this value is constant, i.e., even spacing, some

7-27

7 Tutorial: Producing Lookup Table Data

simplification is possible. If spacing is not just even but also a power
of two, then very significant simplifications are possible for fixed-point
implementations.

Uneven Case
For the uneven case, one possible implementation of the ideal interpolation
in fixed point is as follows:

xNum = uAngle - xuneven[iLeft];
xDen = xuneven[iRght] - xuneven[iLeft];
yDiff = yuneven[iRght] - yuneven[iLeft];

MUL_S32_S16_U16(bigProd, yDiff, xNum);

DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, xDen);

yUneven = yuneven[iLeft] + yDiff;

The multiplication and division routines are not shown here. These can be
somewhat involved and depend on the target processor. For example, these
routines look quite different for a 16-bit processor than for a 32-bit processor.

Even Case
Evenly spaced breakpoints implement interpolation using just slightly
different calculations than the uneven case. The key difference is that the
calculations do not directly use the breakpoints. This means the breakpoints
are not required in ROM, which can be a very significant savings:

xNum = uAngle - (iLeft * 455U);

yDiff = yeven[iLeft+1] - yeven[iLeft];

MUL_S32_S16_U16(bigProd, yDiff, xNum);

DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, 455U);

yEven = yeven[iLeft] + yDiff;

7-28

Effect of Spacing on Speed, Error, and Memory Usage

Power of Two Case
Power of two spaced breakpoints implement interpolation using very different
calculations than the other two cases. As in the uneven case, breakpoints are
not used in the generated code and therefore not required in ROM:

lambda = uAngle & 0x00FFU;

yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2);

yPow2 += ypow2[iLeft];

This implementation has very significant advantages over the uneven and
even implementations. The key difference is that a subtraction and a division
are replaced by a bitwise AND combined with a shift right at the end of the
multiplication. Another advantage is that the term (u - xData[iLeft])
/ (xData[iRght] - xData[iLeft]) is computed with no loss of precision,
because the spacing is a power of two. In contrast, the uneven and even cases
usually introduce rounding error in this calculation.

Conclusion
The number of Y data points follows the expected pattern. For the same
worst-case error, unrestricted spacing (uneven) requires the fewest data
points, and power-of-two-spaced breakpoints require the most. However, the
implementation for the evenly spaced and the power of two cases does not
need the breakpoints in the generated code. This reduces their data ROM
requirements by half. As a result, the evenly spaced case actually uses less
data ROM than the unevenly spaced case. Also, the power of two case requires
only slightly more ROM than the uneven case. Changing the worst-case error
can change these rankings. Nonetheless, when you compare data ROM usage,
you should always take into account the fact that the evenly spaced and power
of two spaced cases do not require their breakpoints in ROM.

The effort of determining where the current input is relative to the
breakpoints strongly favors the evenly spaced and power of two spaced cases.
With uneven spacing, you use a binary search method that loops up to log2(N)
times. With even and power of two spacing, you can determine the location
with the execution of one line of C code. But you cannot decide the relative

7-29

7 Tutorial: Producing Lookup Table Data

advantages of power of two versus evenly spaced without detailed knowledge
of the hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which
uses a bitwise AND operation and a shift to replace a subtraction and a
division. The amount of advantage provided by this depends on the specific
hardware, but you would expect an advantage in code size, speed, and also in
accuracy. The evenly spaced case calculates the interpolation with a minor
improvement in efficiency over the unevenly spaced case.

7-30

8

Code Generation

Overview (p. 8-2) Provides an overview of generating
code from models using fixed-point
blocks

Code Generation Support (p. 8-3) Discusses the simulation features
supported by code generation in the
Simulink® Fixed Point™ software

Accelerating Fixed-Point Models
(p. 8-6)

Information about using acceleration
modes to increase the speed of some
fixed-point models

Using External Mode or Rapid
Simulation Target (p. 8-8)

Information on errors that can
occur when using the Real-Time
Workshop® external mode or rapid
simulation target with fixed-point
models

Optimizing Your Generated Code
(p. 8-10)

Tips to help you optimize your
generated code to reduce ROM or
model execution time

Optimizing Your Generated Code
with the Model Advisor (p. 8-15)

Discusses optimizing your
fixed-point code with the help
of the Model Advisor

8 Code Generation

Overview
You can generate C code with the Simulink® Fixed Point™ software by
using the Real-Time Workshop® and Stateflow® Coder™ products. The code
generated from fixed-point models uses only integer types and automatically
includes all operations, such as shifts, needed to account for differences
in fixed-point locations. You can use the generated code on embedded
fixed-point processors or on rapid prototyping systems even if they contain a
floating-point processor. For more information about code generation, refer to
the Real-Time Workshop and Stateflow Coder documentation.

You can generate code for testing on a rapid prototyping system using
products such as xPC Target™, Real-Time Windows Target™, or dSPACE®

software. The target compiler and processor may support floating-point
operations in software or in hardware. In any case, the fixed-point portions of
a model generate pure integer code and do not use floating-point operations.
This allows valid bit-true testing even on a floating-point processor.

You can also generate code for nonreal-time testing. For example, you can
generate code to run in nonreal-time on computers running any supported
operating system. Even though the processors have floating-point hardware,
the code generated by fixed-point blocks is pure integer code. The Generic
Real-Time Target (GRT) in the Real-Time Workshop product and acceleration
modes in the Simulink® software are examples of where nonreal-time code
is generated and run.

8-2

Code Generation Support

Code Generation Support

In this section...

“Introduction” on page 8-3

“Languages” on page 8-3

“Storage Class of Variables” on page 8-3

“Storage Class of Parameters” on page 8-4

“Rounding Modes” on page 8-4

“Overflow Handling” on page 8-4

“Blocks” on page 8-4

“Scaling” on page 8-5

Introduction
All fixed-point blocks support code generation, with the exception of particular
simulation features. The sections that follow describe the code generation
support that the Simulink® Fixed Point™ software provides.

Languages
C code generation is supported.

Storage Class of Variables

• Fixed-point code generation can handle variables that both match and do
not match the target compiler sizes for char, short, int, or long data
types. Code generation supports any variable having a width less than or
equal to the size of a long data type or 32 bits, whichever is smaller. For
example, consider a compiler that defines a long data type to be 40 bits.
On such a compiler, code generation supports only those variables that
range between 1 and 32 bits.

This capability is particularly useful if you want to

- Create a prototype on a target chip, but use a different target chip for
production

8-3

8 Code Generation

- Provide bit-true simulation in a rapid prototyping environment for odd
data type sizes used by FPGAs, ASICs, 24-bit DSPs, and so on

• Fixed-point code generation supports floating-point variables.

Note For information on how to specify the bit sizes of your target in the
Hardware Implementation pane of the Configuration Parameters dialog,
refer to “Configuring Hardware Properties” in the Real-Time Workshop®

User’s Guide.

Storage Class of Parameters

• The Real-Time Workshop product requires that parameters be 1 to 32 bits,
either signed or unsigned. The parameter size must also be compatible
with the target C compiler.

• Fixed-point code generation supports floating-point parameters.

Rounding Modes
All five rounding modes—Zero, Nearest, Ceiling, Floor, and Simplest—are
supported.

Overflow Handling

• Saturation and wrapping are supported.

• Wrapping generates the most efficient code.

• Currently, you cannot choose to automatically exclude saturation code
when hardware saturation is available. You must select wrapping in order
for the Real-Time Workshop product to exclude saturation code.

Blocks
All blocks generate code for all operations with a few exceptions. The Lookup
Table, Lookup Table (2-D), and Lookup Table Dynamic blocks generate code
for all lookup methods except Interpolation-Extrapolation.

8-4

Code Generation Support

Scaling
Any binary-point-only scaling and [Slope Bias] scaling that is supported in
simulation is supported, bit-true, in code generation.

8-5

8 Code Generation

Accelerating Fixed-Point Models
You can use Simulink® acceleration modes with your fixed-point model if the
model meets the code generation restrictions. The acceleration modes can
drastically increase the speed of some fixed-point models. This is especially
true for models that execute a very large number of time steps. The time
overhead to generate code for a fixed-point model is generally larger than the
time overhead to set up a model for simulation. As the number of time steps
increases, the relative importance of this overhead decreases.

Every Simulink model is configured to have a start time and a stop time in
the Configuration Parameters dialog box. Simulink simulations are usually
configured for nonreal-time execution, which means that the Simulink
software tries to simulate the behavior from the specified start time to the
stop time as quickly as possible. The time it takes to complete a simulation
consists of two parts: overhead time and core simulation time, which is spent
calculating changes from one time step to the next. For any model, the time it
takes to simulate if the stop time is the same as the start time can be regarded
as the overhead time. If the stop time is increased, the simulation takes
longer. This additional time represents the core simulation time. Using an
acceleration mode to simulate a model has an initially larger overhead time
that is spent generating and compiling code. For any model, if the simulation
stop time is sufficiently close to the start time, then Normal mode simulation
is faster than an acceleration mode. But an acceleration mode can eliminate
the overhead of code generation for subsequent simulations if structural
changes to the model have not occurred.

In Normal mode, the Simulink software runs general code that can handle
a variety of situations. In an acceleration mode, code is generated that is
specifically tailored to the current usage. For fixed-point use, the tailored
code is much leaner than the simulation code and executes much faster.
The tailored code allows an acceleration mode to be much faster in the core
simulation time. For any model, when the stop time is close to the start
time, overhead dominates the overall simulation time. As the stop time is
increased, there is a point at which the core simulation time dominates overall
simulation time. Normal mode has less overhead compared to an acceleration
mode when fresh code generation is necessary. Acceleration modes are faster
in the core simulation portion. For any model, there is a stop time for which
Normal mode and acceleration mode with fresh code generation have the
same overall simulation time. If the stop time is decreased, then Normal

8-6

Accelerating Fixed-Point Models

mode will be faster. If the stop time is increased, then an acceleration mode
will have an increasing speed advantage. Eventually, the acceleration mode
speed advantage will be drastic.

Normal mode generally uses more tailored code for floating-point calculations
compared to fixed-point calculations. Normal mode is therefore generally
much faster for floating-point models than for similar fixed-point models.
For acceleration modes, the situation often reverses and fixed-point becomes
significantly faster than floating-point. As noted above, the fixed-point code
goes from being very general to highly tailored and efficient. Depending on
the hardware, the integer-based fixed-point code can gain speed advantages
over similar floating-point code. Many processors can do integer calculations
much faster than similar floating-point operations. In addition, if the data
bus is narrow, there can also be speed advantages to moving around 1-, 2-, or
4-byte integer signals compared to 4- or 8-byte floating-point signals.

See “Accelerating Models” in Using Simulink for more information.

8-7

8 Code Generation

Using External Mode or Rapid Simulation Target

In this section...

“Introduction” on page 8-8

“External Mode” on page 8-8

“Rapid Simulation Target” on page 8-9

Introduction
If you are using the Real-Time Workshop® external mode or rapid simulation
(rsim) target (see Real-Time Workshop User’s Guide for more information),
there are situations where you might get unexpected errors when tuning block
parameters. These errors can arise when you specify the Best precision
scaling option for blocks that support constant scaling for best precision. See
“Constant Scaling for Best Precision” on page 2-12 for a description of the
constant scaling feature.

The sections that follow provide further details about the errors you might
encounter. To avoid these errors, specify a scaling value instead of using the
Best precision scaling option.

External Mode
If you change a parameter such that the binary point moves during an
external mode simulation or during graphical editing, and you reconnect to
the target, a checksum error occurs and you must rebuild the code. When you
use Best Precision scaling, the binary point is automatically placed based
on the value of a parameter. Each power of two roughly marks the boundary
where a parameter value maps to a different binary point. For example, a
parameter value of 1 to 2 maps to a particular binary point position. If you
change the parameter to a value of 2 to 4, the binary point moves one place to
the right, while if you change the parameter to a value of 0.5 to 1, it moves
one place to the left.

For example, suppose a block has a parameter value of -2. You then build
the code and connect in external mode. While connected, you change the
parameter to -4. If the simulation is stopped and then restarted, this
parameter change causes a binary point change. In external mode, the binary

8-8

Using External Mode or Rapid Simulation Target

point is kept fixed. If you keep the parameter value of -4 and disconnect
from the target, then when you reconnect, a checksum error occurs and you
must rebuild the code.

Rapid Simulation Target
If a parameter change is great enough, and you are using the best precision
mode for constant scaling, then you cannot use the rsim target.

If you change a block parameter by a sufficient amount (approximately a
factor of two), the best precision mode changes the location of the binary
point. Any change in the binary point location requires the code to be rebuilt
because the model checksum is changed. This means that if best precision
parameters are changed over a great enough range, you cannot use the rapid
simulation target and a checksum error message occurs when you initialize
the rsim executable.

8-9

8 Code Generation

Optimizing Your Generated Code

In this section...

“Introduction” on page 8-10

“Restrict Data Type Word Lengths” on page 8-11

“Avoid Fixed-Point Scalings with Bias” on page 8-11

“Wrap and Round to Floor or Simplest” on page 8-11

“Limit the Use of Custom Storage Classes” on page 8-13

“Limit the Use of Unevenly Spaced Lookup Tables” on page 8-13

“Minimize the Variety of Similar Fixed-Point Utility Functions” on page 8-14

Introduction
The sections listed in the following table discuss tips to help you to optimize
your code generated from fixed-point blocks, in order to reduce ROM usage or
model execution time:

Tips for Reducing ROM Consumption or Model Execution Time

Tip Reduces
ROM

Reduces
Model

Execution
Time

“Restrict Data Type Word Lengths” on page 8-11 Yes Yes

“Avoid Fixed-Point Scalings with Bias” on page 8-11 Yes Yes

“Wrap and Round to Floor or Simplest” on page 8-11 Yes Yes

“Limit the Use of Custom Storage Classes” on page 8-13 Yes No

“Limit the Use of Unevenly Spaced Lookup Tables” on page 8-13 Yes Yes

“Minimize the Variety of Similar Fixed-Point Utility Functions” on
page 8-14

Yes No

8-10

Optimizing Your Generated Code

Restrict Data Type Word Lengths
If possible, restrict the fixed-point data type word lengths in your model
so that they are equal to or less than the integer size of your target
microcontroller. This results in fewer mathematical instructions in the
microcontroller, and reduces ROM and execution time.

This recommendation strongly applies to global variables that consume global
RAM. For example, Unit Delay blocks have discrete states that have the
same word lengths as their input and output signals. These discrete states
are global variables that consume global RAM, which is a scarce resource
on many embedded systems.

For temporary variables that only occupy a CPU register or stack location
briefly, the space consumed by a long is less critical. However, depending on
the operation, the use of long variables in math operations can be expensive.
Addition and subtraction of long integers generally requires the same effort
as adding and subtracting regular integers, so that operation is not a concern.
In contrast, multiplication and division with long integers can require
significantly larger and slower code.

Avoid Fixed-Point Scalings with Bias
Whenever possible, avoid using fixed-point numbers with bias. In certain
cases, if you choose biases carefully, you can avoid significant increases in
ROM and execution time. Refer to “Recommendations for Arithmetic and
Scaling” on page 3-23 for more information on how to choose appropriate
biases in cases where it is necessary; for example if you are interfacing with a
hardware device that has a built-in bias. In general, however, it is safer to
avoid using fixed-point numbers with bias altogether.

Inputs to lookup tables are an important exception to this recommendation. If
a lookup table input and the associated input data use the same bias, then
there is no penalty associated with nonzero bias for that operation.

Wrap and Round to Floor or Simplest
For most fixed-point and integer operations, the Simulink® software provides
you with options on how overflows are handled and how calculations are
rounded. Traditional hand-written code, especially for control applications,
almost always uses the “no effort” rounding mode. For example, to reduce the

8-11

8 Code Generation

precision of a variable, that variable is simply shifted right. For unsigned
integers and two’s complement signed integers, shifting right and dropping
the bits is equivalent to rounding to floor. To get results comparable to or
better than what you expect from traditional hand-written code, you should
round to floor in most cases.

The primary exception to this rule is the rounding behavior of signed integer
division. The C language leaves this rounding behavior unspecified, but for
most targets the “no effort” mode is round to zero. For unsigned division,
everything is nonnegative, so rounding to floor and rounding to zero are
identical. If you know how your target handles rounding for signed division,
entering this information on the Hardware Implementation pane of the
Configuration Parameters dialog box improves efficiency. For Product blocks
that are only doing division, setting the Round integer calculations
toward parameter to the known rounding mode of your target gives the best
results. You can also use the Simplest rounding mode on blocks where it is
available. For more information, refer to “Simplest Rounding” on page 3-11.

The options for overflow handling also have a big impact on the efficiency
of your generated code. Using software to detect overflow situations and
saturate the results requires the code to be much bigger and slower compared
to simply ignoring the overflows. When overflows are ignored for unsigned
integers and two’s complement signed integers, the results usually wrap
around modulo 2N, where N is the number of bits. Unhandled overflows
that wrap around are highly undesirable for many situations. However,
because of code size and speed needs, traditional hand code contains very
little software saturation. Typically, the fixed-point scaling is very carefully
set so that overflow does not occur in most calculations. The code for these
calculations safely ignores overflow. To get results comparable to or better
than what you would expect from traditional hand-written code, the Saturate
on integer overflow parameter should not be selected for Simulink blocks
doing those calculations. In a design, there might be a few places where
overflow can occur and saturation protection is needed. Traditional hand code
includes software saturation for these few places where it is needed. To get
comparable generated code, the Saturate on integer overflow parameter
should only be selected for the few Simulink blocks that correspond to these
at-risk calculations.

A secondary benefit of using the most efficient options for overflow
handling and rounding is that calculations reduce from multiple statements

8-12

Optimizing Your Generated Code

requiring several lines of C code to small expressions that can be folded into
downstream calculations. Expression folding is a code optimization technique
that produces benefits such as minimizing the need to store intermediate
computations in temporary buffers or variables. This can reduce stack size
and make it more likely that calculations can be efficiently handled using only
CPU registers. An automatic code generator can carefully apply expression
folding across parts of a model and often see optimizations that might not be
obvious. Automatic optimizations of this type often allow generated code to
exceed the efficiency of typical examples of hand code.

Limit the Use of Custom Storage Classes
In addition to the tip mentioned in “Wrap and Round to Floor or Simplest”
on page 8-11, to obtain the maximum benefits of expression folding you also
need to make sure that the RTW storage class field in the Signal Properties
dialog box is set to Auto for each signal. When you choose a setting other
than Auto, you need to name the signal, and a separate statement is created
in the generated code. Therefore, only use a setting other than Auto when
it is necessary for global variables.

You can access the Signal Properties dialog box by selecting any connection
between blocks in your model, and then selecting Signal Properties from
the Simulink Edit menu.

Limit the Use of Unevenly Spaced Lookup Tables
If possible, use lookup tables with nontunable, evenly spaced axes. A table
with an unevenly spaced axis requires a search routine and memory for each
input axis, which increases ROM and execution time. However, keep in mind
that an unevenly spaced lookup table might provide greater accuracy. You
need to consider the needs of your algorithm to determine whether you can
forgo some accuracy with an evenly spaced table in order to reduce ROM and
execution time. Also note that this decision applies only to lookup tables with
nontunable input axes, because tables with tunable input axes always have
the potential to be unevenly spaced.

8-13

8 Code Generation

Minimize the Variety of Similar Fixed-Point Utility
Functions
The Real-Time Workshop® Embedded Coder™ product generates fixed-point
utility functions that are designed to handle specific situations efficiently.
The Real-Time Workshop® product can generate multiple versions of these
optimized utility functions depending on what a specific model requires. For
example, the division of long integers can, in theory, require eight varieties
that are combinations of the output and the two inputs being signed or
unsigned. A model that uses all these combinations can generate utility
functions for all these combinations.

In some cases, it is possible to make small adjustments to a model that reduce
the variety of required utility functions. For example, suppose that across
most of a model signed data types are used, but in a small part of a model, a
local decision to use unsigned data types is made. If it is possible to switch
that portion of the model to use signed data types, then the overall variety of
generated utility functions can potentially be reduced.

The best way to identify these opportunities is to inspect the generated code.
For each utility function that appears in the generated code, you can search
for all the call sites. If relatively few calls to the function are made, then trace
back from the call site to the Simulink model. By modifying those places in
the Simulink model, it is possible for you to eliminate the few cases that
need a rarely used utility function.

8-14

Optimizing Your Generated Code with the Model Advisor

Optimizing Your Generated Code with the Model Advisor

In this section...

“Introduction” on page 8-15

“Optimize Lookup Table Data” on page 8-16

“Reduce Cumbersome Multiplications” on page 8-16

“Optimize the Number of Multiply and Divide Operations” on page 8-17

“Reduce Multiplies and Divides with Nonzero Bias” on page 8-18

“Eliminate Mismatched Scaling” on page 8-18

“Minimize Internal Conversion Issues” on page 8-20

“Use the Most Efficient Rounding” on page 8-22

Introduction
You can use the Simulink® Model Advisor to help you configure your
fixed-point models to achieve a more efficient design and optimize your
generated code. To use the Model Advisor to check your fixed-point models:

1 From the Tools menu of the model you want to analyze, select Model
Advisor. The Model Advisor appears.

2 In the Task Hierarchy pane, expand the By Product node and select
Real-Time Workshop Embedded Coder.

3 From the Model Advisor Edit menu, select Select All to enable all
Model Advisor checks associated with the selected node. For fixed-point
code generation, the most important check boxes to select are Identify
questionable fixed-point operations, Identify blocks that generate
expensive saturation and rounding code, and Check the hardware
implementation.

4 Click Run Selected Checks. Any tips for improving the efficiency of your
fixed-point model appear in the Model Advisor window.

The sections that follow discuss possible messages that might be returned
when you use the Model Advisor check titled Identify questionable

8-15

8 Code Generation

fixed-point operations. The sections explain the messages, discuss their
importance in fixed-point code generation, and offer suggestions for tweaking
your model to optimize the code.

Optimize Lookup Table Data
Efficiency trade-offs related to lookup table data are described in “Effect of
Spacing on Speed, Error, and Memory Usage” on page 7-23. Based on these
trade-offs, the Model Advisor identifies blocks where there is potential for
efficiency improvements. Messages like the following are shown in the
browser to alert you to these cases:

• Lookup table input data is not evenly spaced. An evenly spaced table might
be more efficient. See fixpt_look1_func_approx.

• The lookup table input data is not evenly spaced when quantized, but it
is very close to being evenly spaced. If the data is not tunable, then it is
strongly recommended that you consider adjusting the table to be evenly
spaced. See fixpt_evenspace_cleanup.

• Lookup table input data is evenly spaced, but the spacing is not
a power of two. A simplified implementation could result if the
table could be reimplemented with even power-of-two spacing. See
fixpt_look1_func_approx.

Reduce Cumbersome Multiplications
“Targeting an Embedded Processor” on page 4-4 discusses the capabilities and
limitations of embedded processors. “Design Rules” on page 4-5 recommends
that inputs to a multiply operation should not have word lengths larger than
the base integer type of your processor. Multiplication with larger word
lengths can always be handled in software, but that approach requires much
more code and is much slower. The Model Advisor identifies blocks where
undesirable software multiplications are required. Visual inspection of the
generated code, including the generated multiplication utility function, will
make the cost of these operations clear. It is strongly recommended that you
adjust the model to avoid these operations. Messages like the following are
shown in the browser to alert you to this situation:

• A very cumbersome multiplication is required by this block. The first input
has 8 bits. The second input has 32 bits. The ideal product has 40 bits. The

8-16

Optimizing Your Generated Code with the Model Advisor

largest integer size for the target has only 32 bits. Saturation is ON, so it is
necessary to determine all 40 bits of the ideal product in the C code. The C
code required to do this multiplication is large and slow. For this target,
restricting multiplications to 16 bits times 16 bits is strongly recommended.

• A very cumbersome multiplication is required by this block. The first input
has 8 bits. The second input has 32 bits. The ideal product has 40 bits. The
largest integer size for the target has only 32 bits. The relative scaling of
the inputs and the output requires that some of the 8 most significant
bits of the ideal product be determined in the C code. The C code required
to do this multiplication is large and slow. For this target, restricting
multiplications to 16 bits times 16 bits is strongly recommended.

Optimize the Number of Multiply and Divide
Operations
The number of multiplications and divisions that a block performs can have a
big impact on accuracy and efficiency. The Model Advisor detects some, but
not all, situations where rearranging the operations can improve accuracy,
efficiency, or both.

One such situation is when a calculation using more than one division
operation is computed. A browser message will identify Product blocks that
are doing multiple divisions. Note that multiple divisions spread over a series
of blocks are not detected by Model Advisor:

• This Product block is configured to do more than one division operation.
A general guideline from the field of numerical analysis is to multiply all
the denominator terms together first, then do one and only one division.
This improves accuracy and often speed in floating-point and especially
fixed-point. This can be accomplished in Simulink by cascading Product
blocks.

Another situation is when a single Product block is configured to do more
than one multiplication or division operation. A browser message will identify
Product blocks doing multiple operations:

• This Product block is configured to do more than one multiplication or
division operation. This is supported, but if the output data type is
integer or fixed-point, then better result are likely if this operation is split
across several blocks each doing one multiplication or one division. Using

8-17

8 Code Generation

several blocks allows the user to control the data type and scaling used
for intermediate calculations. The choice of data types for intermediate
calculations affects precision, range errors, and efficiency.

Reduce Multiplies and Divides with Nonzero Bias
“Rules for Arithmetic Operations” on page 3-39 discusses the implementation
details of fixed-point multiplication and division. That section shows the
significant increase in complexity that occurs when signals with nonzero
biases are involved in multiplication and division. The Model Advisor puts a
message in the browser that identifies blocks that require these complicated
operations. It is strongly recommended that you make changes to eliminate
the need for these complicated operations:

• This block is multiplying signals with nonzero bias. It is recommended that
this be avoided when possible. Extra steps are required to implement the
multiplication (if possible). Inserting a Data Type Conversion block before
and after the block doing the multiplication allows the biases to be removed
and allows the user to control data type and scaling for intermediate
calculations. In many, cases the Data Type Conversion blocks can be move
to the “edges” of a (sub)system. The conversion is only done once and all
blocks in the can benefit from simpler bias-free math.

Eliminate Mismatched Scaling
Scaling adjustment is an extremely common operation in fixed-point designs.
In the vast majority of cases, shifts left or shifts right are sufficient to handle
the scaling adjustment. This occurs when the slope adjustment is an exact
power of two, and the bias adjustment term is zero. Situations where shifts
are not sufficient to handle scaling adjustments are called mismatched
scaling. Cases of mismatched scaling can involve either mismatched slopes
or mismatched biases.

For mismatched slopes, it is necessary to multiply by an integer correction
term in addition to shifting. The need for this extra multiplication often
represents a design oversight. The extra multiplication requires extra code,
slows down the speed of execution, and usually introduces additional precision
loss. By adjusting the scaling of the inputs or outputs, you can eliminate
mismatched slopes. The most efficient designs minimize the number of places
where mismatched slopes occur. The need to handle mismatched slopes can
occur in many Simulink blocks, including Product, Sum, Relational Operator,

8-18

Optimizing Your Generated Code with the Model Advisor

and MinMax. A browser message will identify these blocks. The Data Type
Conversion block can also face mismatched slopes, but it is assumed that this
explicit conversion is intentional, so no Model Advisor messages are issued:

• This block is multiplying signals with mismatched slope adjustment
terms. The first input has slope adjustment 1.01. The second input has
slope adjustment 1. The output has slope adjustment 1. The net slope
adjustment is 1.01. This mismatch causes the overall operation to involve
two multiply instructions rather than just one as expected. The mismatch
can be removed by changing the data type of the output.

• This Sum block has a mismatched slope adjustment term between an input
and the output. The input has slope adjustment 1.5. The output has slope
adjustment 1. The net slope adjustment is 1.5. This mismatch causes the
Sum block to require a multiply operation each time the input is converted
to the outputs data type and scaling. The mismatch can be removed by
changing the scaling of the output or the input.

• This MinMax block has mismatched slope adjustment terms between an
input and the output. The input has slope adjustment 1.125. The output
has slope adjustment 1. The net slope adjustment is 1.125. This mismatch
causes the MinMax block to require a multiply operation each time the
input is converted to the data type and scaling of the output. The mismatch
can be removed by changing the scaling of either the input or output.

• This Relational Operator block has mismatched slope adjustment terms
between the first and second input. The first input has slope adjustment 1.
The second input has slope adjustment 1.125. The net slope adjustment
is 1.125. This mismatch causes the relational operator block to require a
multiply operation each time the nondominant input is converted to the
data type and scaling of the dominant input. The mismatch can be removed
by changing the scaling of either of the inputs.

For mismatched bias, it is usually necessary to add or subtract an integer
correction term as a separate step in addition to the normal shifting. Like
slope mismatch, the need to do this extra addition often represents a design
oversight. Except for the Data Type Conversion block, Model Advisor assumes
mismatched bias is an oversight. A message such as the following appears
in the browser, identifying blocks that could be made more efficient by
eliminating mismatched biases:

8-19

8 Code Generation

• For this Sum block, the addition and subtraction of the input biases do not
cancel with the output bias. The implementation will include one extra
addition or subtraction instruction to correctly account for the net bias
adjustment. Changing the bias of the output scaling can make the net bias
adjustment zero and eliminate the need for the extra operation.

Minimize Internal Conversion Issues
Many fixed-point operations need to do internal data type and scaling
conversions. Fixed-point operations are based upon lower level operations,
such as integer addition and integer comparisons, that require the arguments
to have the same data type and scaling. This is why blocks built on these
operations, such as Sum, Relational Operator, and MinMax, must do internal
conversions. There can be issues related to these internal conversions, such
as range errors, that lead to overflows and loss of efficiency. Model Advisor
warns separately about these two issues with messages like the following:

• For this Relational Operator block, the first input has the greater positive
range. The second input is converted to the data type and scaling of the
first input prior to performing the relational operation. The first input
has range 0 to 255.996 but the second input has range -4 to 3.96875 so a
range error can occur when casting.

• For this MinMax block, an input is converted to the data type and scaling
of the output prior to performing the relational operation. The input has
range 0 to 255.996 but the output has range -256 to 255.992, so a range
error can occur when casting.

• For this Relational Operator block, the second input has the greater
positive range. The first input is converted to the data type and scaling of
the second input prior to performing the relational operation. The first
input has range -4 to 3.96875 but the second input has range 0 to 255.996,
so a range error can occur when casting.

• The Sum block can have a range error prior to the addition or subtraction
operation being performed. For simplicity of design, the sum block always
casts each input to the output’s data type and scaling prior to performing
the addition or subtraction. One of the inputs has range -128 to 127.996
but the output has range -32 to 31.999 so a range error can occur when
casting the input to the outputs data type. Users can get any addition
subtraction their application requires by inserting data type conversion
blocks before and/or after the sum block. For example, suppose the inputs

8-20

Optimizing Your Generated Code with the Model Advisor

were a combination of signed and unsigned 8 bits with binary points that
differed by at most 5 places. These output of the sum block could be set to
signed 16 bit with scaling that matched the most precise input. When the
inputs were cast to the outputs data type there would be no loss of range or
precision. A conversion block placed after the sum block would allow the
final result to be put in whatever data type was desired.

• The Sum block can have a range error prior to the addition or subtraction
operation being performed. For simplicity of design, the sum block always
casts each input to the output’s data type and scaling prior to performing
the addition or subtraction. Note, for better accuracy and efficiency,
nonzero bias terms are handled separately and are not included in the
conversion from input to output. The ranges given below for the input and
output exclude their biases. One of the inputs has range -4 to 3.96875
but the output has range 0 to 63.999 so a range error can occur when
casting the input to the outputs data type. Users can get any addition
subtraction their application requires by inserting data type conversion
blocks before and/or after the sum block. For example, suppose the inputs
were a combination of signed and unsigned 8 bits with binary points that
differed by at most 5 places. These output of the sum block could be set to
signed 16 bit with scaling that matched the most precise input. When the
inputs were cast to the outputs data type there would be no loss of range or
precision. A conversion block placed after the sum block would allow the
final result to be put in whatever data type was desired.

For some operations, the need to do an internal conversion can represent
a design oversight. The impact of this oversight is a loss of efficiency, and
possibly a loss of accuracy. As an example, consider the comparison of a
signal against a constant using a Relational Operator block. To compare a
fixed-point signal against a constant, the underlying implementation should
directly compare the stored integer of the input signal against an invariant
stored integer. If the scaling or data type of the signal and constant are
different, then it is also necessary to do a conversion operation. This extra
conversion work is usually inefficient and is often unexpected. The Model
Advisor warns about these situations with messages like the following:

• For this MinMax block, an input is converted to the data type and scaling
of the output prior to performing the relational operation. The input has
precision 0.00390625. The output has precision 0.0078125, so there can be
a precision loss each time the conversion is performed.

8-21

8 Code Generation

• For this relational operator block, the data types of the first and second
inputs are not the same. A conversion operation is required every time
the block is executed. If one of the inputs is invariant (sample time color
magenta), then changing the data type and scaling of the invariant input to
match the other input is a good opportunity for improving the efficiency of
your model.

• For this MinMax block, the data types of the output and an input are not the
same. A conversion operation is required every time the block is executed.

Use the Most Efficient Rounding
You can specify rounding options for fixed-point operations both with the
Round integer calculations toward parameter on many block masks,
and with the Signed integer division rounds to parameter on the
Hardware Implementation pane of the Configuration Parameters dialog
box. Traditional hand-written code, especially for control applications, almost
always uses the “no effort” rounding mode. For example, to reduce the
precision of a variable, that variable is simply shifted right. For unsigned
integers and two’s complement signed integers, shifting right and dropping
the bits is equivalent to rounding to floor. To get results comparable to or
better than what you expect from traditional hand-written code, you should
round to floor in most cases.

The primary exception to this rule is the rounding behavior of signed integer
division. The C language leaves this rounding behavior unspecified, but for
most targets the “no effort” mode is round to zero. For unsigned division,
everything is nonnegative, so rounding to floor and rounding to zero are
identical. If you know how your target handles rounding for signed division,
entering this information in the Hardware Implementation pane of the
Configuration Parameters dialog box improves efficiency. For Product blocks
that are only doing division, setting the Round integer calculations
toward parameter to the known rounding mode of your target gives the best
results. You can also use the Simplest rounding mode on blocks where it is
available. For more information, refer to “Simplest Rounding” on page 3-11.
The Model Advisor alerts you when rounding optimizations are available with
messages like the following:

• To obtain the most efficient generated code, you should change the Round
integer calculations toward parameter of the following block to either
Floor or Simplest.

8-22

Optimizing Your Generated Code with the Model Advisor

• Integer division generated code could be more efficient. The rounding
behavior of signed integer division is not fully specified by the C language
standards. When faced with this lack of specification, the code generated
for division can be large in order to ensure bit-true agreement between
simulation and code generation. The Hardware Implementation pane
of the Configuration Parameters dialog allows you to specify the rounding
behavior of signed integer division for the Embedded Hardware. For this
model, the rounding behavior is currently set to Undefined. You can reduce
the size of the code generated for division by determining and setting this
information. The most common behavior is that signed integer division
rounds to Zero.

8-23

8 Code Generation

8-24

9

Fixed-Point Advisor
Reference

Fixed-Point Advisor (p. 9-2) Introduces the Fixed-Point Advisor

Prepare Model for Conversion
(p. 9-6)

Validate model settings

Prepare for Data Typing and Scaling
(p. 9-18)

Set block configuration options and
define block design minimum and
maximum values

Perform Data Typing and Scaling
(p. 9-24)

Specify data types and scaling

Prepare for Code Generation (p. 9-47) Verify model configured for code
generation optimizations

9 Fixed-Point Advisor Reference

Fixed-Point Advisor

9-2

Fixed-Point Advisor

Fixed-Point Advisor Overview
The Fixed-Point Advisor is a tool you can use to guide you through the process
of converting your model from an unknown floating-point data type to a
known fixed-point data type.

Description
Use the Fixed-Point Advisor to:

• Set model-wide configuration options.

• Set block-specific dialog parameters.

• Set the initial scaling for the model.

• Validate the results of the initial scaling against the floating-point model.

Procedures

Automatically Run Tasks. The following steps list how you can
automatically run all tasks within a folder.

1 Click the Run to Failure button. The tasks run in order until a task fails.

2 Fix the failure:

• Manually fix the problem using the Explore Result button, if present.

• Manually fix the problem by modifying the model as instructed in the
Analysis Result box.

• Automatically fix the problem using the Modify All button, if available.

3 Continue the run to failure by selecting Run > Continue.

Run Individual Tasks. The following steps list how you can run an
individual task.

1 Specify Input Parameters, if present.

2 Run the task by clicking Run This Task.

3 Review Results. The possible results are:

9-3

9 Fixed-Point Advisor Reference

Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.

4 If Status is Warning or Fail, you can:

• Manually fix the problem using the Explore Result button, if present.

• Manually fix the problem by modifying the model.

• Automatically fix the problem using the Modify All button, if available.

5 Once you have fixed a Warning or Failed task, rerun the task by clicking
Run This Task.

View a Run Summary. To view a complete run summary of Pass, Failed,
Warning, and Not Run tasks:

1 Select the Fixed-Point Advisor folder.

2 Click the path link listed for Report. A report containing a summary of
all tasks is displayed.

Tips

• The Fixed-Point Advisor is intended to assist in converting small models.
Larger models can result in long processing times.

• Specifying small simulation run times reduces task processing times. You
can change the simulation run time in the Configuration Parameters dialog
box. See “Start time” and “Stop time” in the Simulink® reference for more
information.

• Make small changes to your model so that you can identify where errors
are introduced accidentally.

• Isolate the system under conversion by placing Data Conversion blocks on
the inputs and outputs of the system.

• Convert subsystems within your model, rather than the entire model. This
saves time and unnecessary conversions.

9-4

Fixed-Point Advisor

See Also

• “Working With the Fixed-Point Advisor” on page 5-2

• “Tutorial: Converting a Model from Floating- to Fixed-Point” on page 5-5

9-5

9 Fixed-Point Advisor Reference

Prepare Model for Conversion

In this section...

“Prepare Model for Conversion Overview” on page 9-7

“Verify model simulation settings” on page 9-8

“Address unsupported blocks” on page 9-9

“Verify update diagram status” on page 9-10

“Set up signal logging” on page 9-11

“Create simulation reference data” on page 9-12

“Verify hardware selection” on page 9-13

“Verify Fixed-Point Conversion Guidelines Overview” on page 9-14

“Check model configuration data validity diagnostic parameters settings”
on page 9-15

“Implement logic signals as Boolean data” on page 9-16

“Check for proper bus usage” on page 9-17

9-6

Prepare Model for Conversion

Prepare Model for Conversion Overview
This folder contains tasks for configuring and setting up the model for data
logging.

Description
Validate model-wide settings and create simulation reference data for
downstream tasks.

See Also

• “Working With the Fixed-Point Advisor” on page 5-2

• “Tutorial: Converting a Model from Floating- to Fixed-Point” on page 5-5

9-7

9 Fixed-Point Advisor Reference

Verify model simulation settings
Validate that model logging options are consistent with fixed-point conversion
goals.

Description
Ensures that fixed-point data can be logged in downstream tasks.

Analysis Results and Recommended Actions

Conditions Recommended Action

The following Fixed-Point Tool
settings are not set to the correct
values:
• Overwrite or merge results

• Logging mode

• Data type override

Set the following:
• Overwrite or merge results to

Overwrite

• Logging mode to Minimums,
maximums and overflows

• Data type override to Force
off

The model Configuration Parameters
Data Import/Export > Signal
logging check box is off.

Set to on

The fipref DataTypeOverride
property is not set to ForceOff.

Set DataTypeOverride to ForceOff

Action Results
Clicking Modify All configures the model for recommended simulation
settings and fipref objects. A table displays the current and previous block
settings.

See Also

• “Data Type Override” on page 6-20

• “Signal logging”

• “Using fipref Objects to Set Data Type Override Preferences”

9-8

Prepare Model for Conversion

Address unsupported blocks
Identify blocks that do not support fixed-point data types.

Description
Blocks that do not support fixed-point data types cannot be converted.

Analysis Results and Recommended Actions

Conditions Recommended Action

Blocks that do not support
fixed-point data types exist in model.

• Decouple the block by
right-clicking the block and
selecting Insert Data Type
Conversion > All Ports.

• Replace the block with the block
specified in the Result pane.

9-9

9 Fixed-Point Advisor Reference

Verify update diagram status
Verify update diagram succeeds.

Description
A model update diagram action is necessary for most down stream tasks.

Analysis Results and Recommended Actions

Conditions Recommended Action

The model diagram does not update. Fix the model. Make sure needed
mat files are loaded.

See Also
See “Updating a Block Diagram” in the Simulink® User’s Guide.

9-10

Prepare Model for Conversion

Set up signal logging
Specify at least one signal of interest to log during simulation.

Description
The Fixed-Point Advisor uses logged signals to compare the initial data type
to the fixed-point data type.

Analysis Result and Recommended Actions

Conditions Recommended Action

No signals are logged. Specify at least one signal to be
logged.

Action Result
Clicking Modify All enables logging on unique signals. The total number of
signals logged is displayed.

Tips
Log inports and outports of the system under conversion.

9-11

9 Fixed-Point Advisor Reference

Create simulation reference data
Simulate the model using the current solver settings, and create and archive
reference signal data to use for comparison and analysis.

Description
Simulate the model using the current solver settings, create and archive
reference signal data to use for comparison and analysis in downstream tasks.

Analysis Results and Recommended Actions

Conditions Recommended Action

Simulation does not run Fix errors so simulation will run.

Simulation did not generate output
data because no signals have signal
data logging enabled.

Enable signal data logging on at
least one signal.

Tips

• If the simulation is set up to have a long simulation time, after starting the
run of this check you can stop the simulation by selecting the waitbar and
then pressing Ctrl+C. This allows you to change the simulation time and
continue without having to wait for the long simulation to complete.

• Specifying small simulation run times reduces task processing times. You
can change the simulation run time in the Configuration Parameters dialog
box. See “Start time” and “Stop time” in the Simulink reference for more
information.

9-12

Prepare Model for Conversion

Verify hardware selection
Verify target hardware setting.

Description
Review the hardware device settings and verify they are the settings you
intend to use.

Analysis Results and Recommended Actions

Conditions Recommended Action

The model Configuration
Parameters > Hardware
Implementation device parameters
are not specified.

Specify the Configuration
Parameters > Hardware
Implementation > Device vendor
and Device type parameters.

See Also

• “Device type”

• “Device vendor”

9-13

9 Fixed-Point Advisor Reference

Verify Fixed-Point Conversion Guidelines Overview
Verify modeling guidelines related to fixed-point conversion goals.

Description
Validate model-wide settings.

See Also

• “Working With the Fixed-Point Advisor” on page 5-2

• “Tutorial: Converting a Model from Floating- to Fixed-Point” on page 5-5

9-14

Prepare Model for Conversion

Check model configuration data validity diagnostic
parameters settings
Verify that model Configuration Parameters > Diagnostic > Data Validity
parameters are not set to error.

Description
If the Configuration Parameters > Diagnostic > Data Validity parameters
are set to error, the model update diagram action fails in downstream checks.

Analysis Results and Recommended Actions

Conditions Recommended Action

Detect downcast is set to error.

Detect overflow is set to error.

Detect underflow is set to error.

Detect precision loss is set to
error.

Detect loss of tunability is set to
error

Set the diagnostic data validity
parameters to warning in
Configuration Parameters >
Diagnostics > Data Validity >
Parameters

Action Results
Clicking Modify All sets the model Configuration Parameters >
Diagnostics > Data Validity parameters to warning. A table displays the
current and previous Data Validity parameter settings.

9-15

9 Fixed-Point Advisor Reference

Implement logic signals as Boolean data
Confirm that Simulink simulations are configured to treat logic signals as
Boolean data.

Description
Configuring logic signals as Boolean data optimizes the code generated in
downstream tasks.

Analysis Results and Recommended Actions

Conditions Recommended Action

Implement logic signals as
boolean data is set to off.

Set Configuration Parameters
> Optimization > Implement
logic signals as boolean data (vs.
double) to on.

Action Results
Clicking Modify All selects the model Configuration Parameters >
Optimization > Implement logic signals as boolean data (vs. double)
check box. A table displays the current and previous parameter settings.

9-16

Prepare Model for Conversion

Check for proper bus usage
Identify any Mux block used as a bus creator and any bus signal treated
as a vector.

Description
This task identifies:

• Mux blocks that are used as bus creators

• Bus signals treated as vectors in the top-level model

Analysis Results and Recommended Actions

Conditions Recommended Action

The Fixed-Point Advisor is not
operating on a top-level model

If this task is important to your
conversion, start the Fixed-Point
Advisor on the top-level model.

The model is not configured to detect
future changes that might result in
improper bus usage.

Set Configuration Parameters
> Diagnostics > Connectivity >
Buses > Bus signals treated as
vector to error.

9-17

9 Fixed-Point Advisor Reference

Prepare for Data Typing and Scaling

In this section...

“Prepare for Data Typing and Scaling Overview” on page 9-19

“Remove output data type inheritance” on page 9-20

“Relax input data type settings” on page 9-21

“Verify Stateflow charts have strong data typing with Simulink” on page
9-22

“Specify block minimum and maximum values” on page 9-23

9-18

Prepare for Data Typing and Scaling

Prepare for Data Typing and Scaling Overview
Configures blocks with data type inheritance or constraints to avoid data
type propagation errors.

Description
The block settings from this folder simplifies the initial scaling. The optimal
block configuration is achieved in later stages. The tasks in this folder are
preparation for scaling, not actual scaling.

Tips
Block output and parameter minimum and maximum values can be specified
in this step.

See Also

• “Working With the Fixed-Point Advisor” on page 5-2

• “Tutorial: Converting a Model from Floating- to Fixed-Point” on page 5-5

9-19

9 Fixed-Point Advisor Reference

Remove output data type inheritance
Identify blocks with an inherited output signal data type.

Description
Inherited data types might lead to data type propagation errors. To prepare
for scaling, replace inherited values with the current propagated data types.

Note This task is preparation for scaling, not actual scaling.

Analysis Results and Recommended Actions

Conditions Recommended Action

Remove output data type inheritance
for blocks by explicitly configuring
the Output data type or Output
data type mode parameter to the
recommended value where possible.

Remove output data type inheritance
for Logical Operator blocks by
clearing the Require all inputs
and outputs to have the same
data type parameter parameter.

Blocks or Stateflow® output data in
the current system or subsystems
have inherited output data types.

Remove Stateflow output data type
inheritance by explicitly configuring
the output data Type property.

Action Results
Clicking Modify All explicitly configures the output data types to the
recommended values where possible. A table lists the previous and current
data types for the reconfigured blocks.

9-20

Prepare for Data Typing and Scaling

Relax input data type settings
Identify blocks with input data type constraints.

Description
Blocks that have input data type constraints might lead to data type
propagation errors.

Note This task is preparation for scaling, not actual scaling.

Analysis Results and Recommended Actions

Conditions Recommended Action

Explicitly configure flexible input
data types for blocks by setting
the InputSameDT parameter to off
where possible.

Explicitly configure Logical Operator
blocks to have flexible input data
types by setting the AllPortsSameDT
parameter to off.

The input data types of blocks
or Stateflow input data in the
current system or subsystems have
constraints.

Explicitly configure flexible
Stateflow input data types by setting
the Type method to Inherited.

Action Results
Clicking Modify All explicitly configures input data types to the
recommended value where possible. A table lists the previous and current
data types for the reconfigured blocks.

9-21

9 Fixed-Point Advisor Reference

Verify Stateflow charts have strong data typing with
Simulink
Verify all Stateflow charts are configured to have strong data typing with
Simulink® I/O.

Description

Note This task is preparation for scaling, not actual scaling.

Analysis Results and Recommended Actions

Conditions Recommended Action

Stateflow charts do not have strong
data typing with Simulink I/O.

Select the Use Strong Data Typing
with Simulink I/O check box in the
chart properties dialog.

Action Results
Clicking Modify All configures all Stateflow charts to have strong data
typing with Simulink I/O.

9-22

Prepare for Data Typing and Scaling

Specify block minimum and maximum values
Specify block output and parameter minimum and maximum values

Description
Block output and parameter minimum and maximum values are used for
fixed-point scaling in other tasks. Typically, they are determined during the
design process based on the system you are creating.

Note This task is preparation for scaling, not actual scaling.

Analysis Results and Recommended Actions

Conditions Recommended Action

Minimum and maximum values are
not specified for Inport blocks.

Specify minimum and maximum
values for Inport blocks.

Tips

• In this task, you can specify minimum and maximum values for any block.

• You can promote simulation minimum and maximum values to output
minimum and maximum values using the Model Advisor Result Explorer,
launched by clicking the Explore Result button. In the center pane
of the Model Advisor Result Explorer, use the check boxes in the
PromoteSimMinMax column to promote values.

See Also
See “Model Advisor Result Explorer” in the Simulink User’s Guide.

9-23

9 Fixed-Point Advisor Reference

Perform Data Typing and Scaling

In this section...

“Perform Data Typing and Scaling Overview” on page 9-25

“Propose scaling for Inport blocks” on page 9-26

“Propose scaling for Constant blocks” on page 9-30

“Propose scaling for blocks” on page 9-34

“Resolve scaling conflicts” on page 9-39

“Summarize data types” on page 9-41

“Propose scaling for parameters” on page 9-42

“Check for numeric errors” on page 9-45

“Analyze logged signals” on page 9-46

9-24

Perform Data Typing and Scaling

Perform Data Typing and Scaling Overview
Specify block data type information. Propose scaling for Simulink® blocks.

Description
This folder contains the tasks to assist you in performing data typing and
scaling.

See Also

• “Working With the Fixed-Point Advisor” on page 5-2

• “Tutorial: Converting a Model from Floating- to Fixed-Point” on page 5-5

9-25

9 Fixed-Point Advisor Reference

Propose scaling for Inport blocks
Provide fixed-point data type scaling for Inport blocks with floating-point
data types.

Description
The Fixed-Point Advisor uses the type provided in the Default Inport data
type menu with the output minimum and maximum values to provide
recommended scaling for Inport blocks, as described in the table below.

How Scaling is Determined

Rationale Output
min /
max
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow / Precision

Maintained
current settings;
overflow is
possible.

No Yes Keep the current word
and fraction lengths.

Overflow is possible.

Maintained
current settings;
overflow is not
possible.

Yes Yes The calculated fraction
length (based on the
current word length
and output minimum
and maximum values)
is greater than or equal
to the current fraction
length. Use the current
word and fraction
lengths.

Overflow is not possible,
and there is no precision
loss.

9-26

Perform Data Typing and Scaling

How Scaling is Determined (Continued)

Rationale Output
min /
max
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow / Precision

Reduced
precision for
current word
length to satisfy
minimum and
maximum range
without overflow.

Yes Yes The calculated fraction
length (based on the
current word length
and output minimum
and maximum values)
is less than the current
fraction length. Use the
current word length and
the calculated fraction
length.

Overflow is not possible,
however precision loss
is possible.

Converted using
input parameter
word length
and minimum
and maximum
values; overflow
is not possible.

Yes No Use the input
parameter word length
and the calculated
fraction length (based
on the input parameter
word length and
output minimum and
maximum values).

Overflow is not possible.

All elements of
bus objects have
fixed-point types.
Maintained
current settings.

N/A Yes Keep the current word
and fraction lengths.

Overflow is possible.

All elements of
bus objects must
have fixed-point
types. Manually
change the bus
object elements to
fixed-point types
and resolve data
type conflicts.

N/A No You must specify the
word and fraction
lengths manually.

N/A

9-27

9 Fixed-Point Advisor Reference

Input Parameters

Default inport data type
Enter a default fixed-point data type to use for Inport blocks, or select
one from the menu:

undefined
int8
uint8
int16
uint16
int32
uint32
fixdt(1,16,4)

Reported Conditions and Recommended Actions

Conditions Recommended Action

The input parameter is invalid. In the Input
Parameters > Default inport
data type menu, enter or select a
valid value.

You haven’t specified minimum
and maximum values for all Inport
blocks with a floating-point data
type.

Specify minimum and maximum
values for all Inport blocks with a
floating-point data type.

The current data type and scaling is
not optimal.

Change the data type and scaling
based on the information provided in
the Action Result pane.

Elements of bus objects have
floating-point data types.

Manually change the bus object
elements to fixed-point data types
and resolve data type conflicts.

Action Results
Clicking Modify All applies the recommended scaling to the Inport blocks.

9-28

Perform Data Typing and Scaling

Tips
You can specify any Default Inport data type by typing in a value.

See Also
“Perform Data Typing and Scaling” on page 5-18

9-29

9 Fixed-Point Advisor Reference

Propose scaling for Constant blocks
Provide fixed-point data type scaling for Constant blocks with floating-point
data types.

Description
The Fixed-Point Advisor uses the type provided in the Constant data type
menu with either the output minimum and maximum, or the Constant block
values to provide recommended scaling for Constant blocks, as described in
the table below.

How Scaling is Determined

Rationale Output
min /
max
available?

Constant
value
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow /
Precision

Maintained
current
settings;
overflow is
not possible.

Yes NA Yes The calculated
fraction length
(based on the current
word length and
output minimum and
maximum values)
is greater than or
equal to the current
fraction length. Use
the current word and
fraction lengths.

Overflow is not
possible, and there is
no precision loss.

9-30

Perform Data Typing and Scaling

How Scaling is Determined (Continued)

Rationale Output
min /
max
available?

Constant
value
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow /
Precision

Reduced
precision
for current
word length
to satisfy
minimum and
maxaximum
range without
overflow.

Yes NA Yes The calculated
fraction length
(based on the current
word length and
output minimum and
maximum values) is
less than the current
fraction length.
Use the current
word length and the
calculated fraction
length.

Overflow is not
possible, however
precision loss is
possible.

Maintained
current
settings;
Constant
value
overflow is
possible.

No Yes Yes The calculated
fraction length
(based on the current
word length and
constant value) is
greater than or
equal to the current
fraction length. Use
the current word and
fraction lengths.

Overflow is possible,
and there is no
precision loss.

9-31

9 Fixed-Point Advisor Reference

How Scaling is Determined (Continued)

Rationale Output
min /
max
available?

Constant
value
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow /
Precision

Reduced
precision
for current
word length
to satisfy
Constant
value;
Constant
value
overflow is
possible.

No Yes Yes The calculated
fraction length
(based on the current
word length and
constant value) is
less than the current
fraction length.
Use the current
word length and the
calculated fraction
length.

Overflow is possible,
and precision loss is
possible.

Converted
using input
parameter
word length
and output
minimum and
maximum
values;
overflow is
not possible.

Yes NA No Use the input
parameter word
length and the
calculated fraction
length (based on
the input parameter
word length and
output minimum and
maximum values).

Overflow is not
possible.

Converted
using input
parameter
word length
and Constant
value;
Constant
value
overflow is
possible.

No Yes No Use the input
parameter word
length and the
calculated fraction
length (based on
the input parameter
word length and
constant value).

Overflow is possible.

9-32

Perform Data Typing and Scaling

Input Parameters

Constant data type
Enter a default fixed-point data type to use for Constant blocks, or
select one from the menu:

undefined
int8
uint8
int16
uint16
int32
uint32
fixdt(1,16,4)

Analysis Results and Recommended Actions

Conditions Recommended Action

The input parameter is invalid. In the Input
Parameters > Constant data type
menu, enter or select a valid value.

The current data type and scaling is
not optimal.

Change the data type and scaling
based on the information provided in
the Action Result pane.

Action Results
Clicking Modify All applies the recommended scaling to the Constant blocks.

Tips
You can specify any Constant data type by typing in a value.

See Also
“Perform Data Typing and Scaling” on page 5-18

9-33

9 Fixed-Point Advisor Reference

Propose scaling for blocks
Provide fixed-point data type scaling for nonsource Simulink blocks that have
floating-point data types.

Description
The Fixed-Point Advisor uses the fixed-point data types provided in the
Input Parameters menus with either the output or simulation minimum
and maximum values to provide recommended scaling, as described in the
table below.

How Scaling is Determined

Rationale min /
max
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow / Precision

Maintained
current settings;
overflow is
possible.

No Yes Keep the current word
and fraction lengths.

Overflow is possible.

Maintained
current settings;
overflow is not
possible.

Yes Yes The calculated fraction
length (based on the
current word length
and minimum and
maximum values) is
greater than or equal
to the current fraction
length. Use the current
word and fraction
lengths.

Overflow is not possible,
and there is no precision
loss.

9-34

Perform Data Typing and Scaling

How Scaling is Determined (Continued)

Rationale min /
max
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow / Precision

Reduced
precision for
current word
length to satisfy
minimum and
maximum range
without overflow.

Yes Yes The calculated fraction
length (based on the
current word length
and minimum and
maximum values) is
less than the current
fraction length. Use the
current word length and
the calculated fraction
length.

Overflow is not possible,
however precision loss
is possible.

Converted using
input parameter
word length and
min/max values;
overflow is not
possible.

Yes No Use the input
parameter word length
and the calculated
fraction length
(based on the input
parameter word length
and minimum and
maximum values).

Overflow is not possible.

Note If the object
has the Saturate on
integer overflow
parameter selected,
and output minimum
and maximum values
are available, clear the
Saturate on integer
overflow parameter.

Converted using
input parameter;
overflow is
possible.

No No Use the word and
fraction lengths based
on the input parameter.
It is not possible to
report better scaling
without minimum and
maximum values.

Overflow is possible.

Note Select the
Saturate on integer
overflow parameter to
aviod overflow.

9-35

9 Fixed-Point Advisor Reference

How Scaling is Determined (Continued)

Rationale min /
max
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow / Precision

All elements of
bus objects have
fixed-point types.
Maintained
current settings.

N/A Yes Keep the current word
and fraction lengths.

Overflow is possible.

All elements of
bus objects must
have fixed-point
types. Manually
change the bus
object elements to
fixed-point types
and resolve data
type conflicts.

N/A No You must specify the
word and fraction
lengths manually.

N/A

Input Parameters

Output data type
Enter a default fixed-point data type to use, or select one from the menu:

undefined
int8
uint8
int16
uint16
int32
uint32
fixdt(1,16,4)

Accumulator data type
Enter a default fixed-point data type to use, or select one from the menu:

undefined

9-36

Perform Data Typing and Scaling

int8
uint8
int16
uint16
int32
uint32
fixdt(1,16,4)

Product output data type
Enter a default fixed-point data type to use, or select one from the menu:

undefined
int8
uint8
int16
uint16
int32
uint32
fixdt(1,16,4)

Analysis Results and Recommended Actions

Conditions Recommended Action

An input parameter is invalid. In the specified Input Parameters
menu, enter or select a valid value.

The current data type and scaling is
not optimal.

• Provide output minimum and
maximum values for blocks
and rerun the task for better
recommendations.

• Change the data type and scaling
based on the information provided
in the Action Result pane.

Elements of bus objects have
floating-point data types.

Manually change the bus object
elements to fixed-point data types
and resolve data type conflicts.

9-37

9 Fixed-Point Advisor Reference

Action Results
Clicking Modify All applies the recommended scaling to the nonsource
Simulink blocks.

Tips
You can specify any data type by typing a value in the Input parameters
menus.

See Also
“Perform Data Typing and Scaling” on page 5-18

9-38

Perform Data Typing and Scaling

Resolve scaling conflicts
Resolve scaling conflicts introduced in previous tasks.

Description
Find and fix all scaling conflicts introduced in previous tasks, as described in
the table below.

How Scaling is Determined

Rationale Description

Shared scaling with other blocks. There is downstream block that
requires same data types for all
inputs.

Analysis Results and Recommended Actions

Conditions Recommended Action

Different scaling is recommended to
avoid scaling conflicts.

Consider applying the
recommendations or specifying
desired scaling.

Current word length does not satisfy
both range and precision for the
input values in Lookup tables.
Increasing the word length for
the input data does not solve the
problem or the word length can not
be increased.

Check whether the input values are
scaleable and increased the word
length to satisfy both range and
precision for the input values in the
Lookup tables downstream. . Rerun
task 3.3. and task 3.4.

Action Results
Clicking Modify All applies the recommended scaling.

9-39

9 Fixed-Point Advisor Reference

Limitations

• When the input data loaded from the workspace different than the inport
data type, MATLAB generates an error because the data types do not
agree. You can fix this error by doing one of the following:

- Disable loading external inputs from the workspace as described in the
error message.

- Change the data type of the input data to match the inport data type,
if possible.

• If you automatically fix this task by clicking the Modify All button, and
the Fixed-Point Advisor cannot automatically resolve a scaling conflict,
when you rerun the task it fails and the Fixed-Point Advisor displays an
error message in the Analysis result. Use the information in the error
message to manually resolve this data type conflict. An example of this is a
conflict due to a bus objects.

See Also
“Perform Data Typing and Scaling” on page 5-18

9-40

Perform Data Typing and Scaling

Summarize data types
Summarize the data types used in the system

Description
Provides a summary of the number of:

• Floating-point data types

• Integer word lengths less than or equal to the native word size

• Integer word lengths greater than the native word size

Analysis Result and Recommended Actions

Conditions Recommended Action

There is at least one signal that does
not have a fixed-point data type.

This summary is provided for your
information, no action is required.

Tips
If you have decoupled a block in your model, for example using a Data Type
Conversion block, this task never passes because the decoupled block is not
converted to have a fixed-point data type.

9-41

9 Fixed-Point Advisor Reference

Propose scaling for parameters
Provide fixed-point data type scaling for block parameters and Stateflow®

Parameters and Constants that have floating-point data types.

Description
The Fixed-Point Advisor uses the fixed-point data types provided in the
Parameter data type menu with either the parameter minimum and
maximum values or value, or initial value to provide recommended scaling, as
described in the table below.

How Scaling is Determined

Rationale min /
max
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow / Precision

Maintained
current settings

No Yes Keep the current word
and fraction lengths.

Overflow is possible.

Maintained
current settings;
min/max
overflow is not
possible.

Yes Yes The calculated fraction
length (based on the
current word length and
parameter minimum
and maximum values)
is greater than or equal
to the current fraction
length. Use the current
word and fraction
lengths.

Overflow is not possible,
and there is no precision
loss.

9-42

Perform Data Typing and Scaling

How Scaling is Determined (Continued)

Rationale min /
max
available?

Fixed-
point
data
type?

Word length /
Fraction length

Overflow / Precision

Reduced
precision for
current word
length to satisfy
min/max range
without overflow.

Yes Yes The calculated fraction
length (based on the
current word length and
parameter minimum
and maximum values)
is less than the current
fraction length. Use the
current word length and
the calculated fraction
length.

Overflow is not possible,
however precision loss
is possible.

Inherit via
internal rule

No No Inherit the word and
fraction lengths based
on block internal rules.

NA

Input Parameters

Parameter data type
Enter a default fixed-point data type to use for parameters, or select
one from the menu:

undefined
int8
uint8
int16
uint16
int32
uint32
fixdt(1,16,4)

9-43

9 Fixed-Point Advisor Reference

Analysis Results and Recommended Actions

Conditions Recommended Action

An input parameter is invalid. In the Input
Parameters > Parameter data
type menu, enter or select a valid
value.

The current data type and scaling is
not optimal.

Change the data type and scaling
based on the information provided in
the Action Result pane.

Action Results
Clicking Modify All applies the recommended scaling.

Tips
You can specify any Parameter data type by typing in a value.

See Also
“Perform Data Typing and Scaling” on page 5-18

9-44

Perform Data Typing and Scaling

Check for numeric errors
Summarize simulation numerical errors.

Description
Numeric errors logged are:

• Overflow

• Saturation

• Parameter saturation

• Division by zero

Analysis Results and Recommended Actions

Conditions Recommended Action

The Fixed-Point Advisor found a
numeric error.

Resolve numeric errors.

9-45

9 Fixed-Point Advisor Reference

Analyze logged signals
Summarize the differences between current and reference simulation data.

Description
View differences between the baseline model and converted model to verify
the model is accurate after the conversion completes. A simulation of the
model occurs during this task creating the current (Active) simulation data.
You created the reference simulation data (Reference) in “Create simulation
reference data” on page 9-12. You can view the differences by clicking the
View Results link in the Analysis Result box.

Input Parameters

Max number of Results
Specify the maximum number of signals to summarize.

Analysis Results and Recommended Actions

Conditions Recommended Action

No signals are logged. Enable signal logging on at least one
line.

9-46

Prepare for Code Generation

Prepare for Code Generation

In this section...

“Prepare for Code Generation Overview” on page 9-48

“Disable signal logging” on page 9-49

“Identify blocks that generate expensive saturation and rounding code”
on page 9-50

“Identify questionable fixed-point operations” on page 9-51

9-47

9 Fixed-Point Advisor Reference

Prepare for Code Generation Overview
Identify settings that might lead to nonoptimal results in code generation.

Limitations
All tasks in this folder require a Real-Time Workshop® license.

See Also

• “Working With the Fixed-Point Advisor” on page 5-2

• “Tutorial: Converting a Model from Floating- to Fixed-Point” on page 5-5

9-48

Prepare for Code Generation

Disable signal logging
Disables unnecessary signal logging.

Description
Disabling unnecessary signal logging avoids declaring extra signal memory in
generated code.

Analysis Results and Recommended Actions

Conditions Recommended Action

Signals are logged. Disable signal logging on all signals.

Action Results
Clicking Modify All disables signal logging on all logged signals.

Limitations
This task requires a Real-Time Workshop license.

9-49

9 Fixed-Point Advisor Reference

Identify blocks that generate expensive saturation
and rounding code
Check for blocks that generate expensive saturation or rounding code.

Description

• Setting the Saturate on integer overflow parameter can produce
condition-checking code that your application might not require.

• Generated rounding code is inefficient because of Round integer
calculations toward parameter setting.

Analysis Results and Recommended Actions

Conditions Recommended Action

Blocks generate expensive saturation
code.

Check each block to ensure that
your application requires setting
Function Block Parameters >
Signal Attributes > Saturate
on integer overflow. Otherwise,
clear the Saturate on integer
overflow parameter to ensure the
most efficient implementation of the
block in the generated code.

Generated code is inefficient. Set the Function Block
Parameters > Round integer
calculations toward parameter to
the recommended value.

Limitations
This task requires a Real-Time Workshop license.

9-50

Prepare for Code Generation

Identify questionable fixed-point operations
Identify fixed-point operations that can lead to nonoptimal results.

Description
The following operations can lead to nonoptimal results:

• Division

- The rounding behavior of signed integer division is not fully specified by
C language standards. Therefore, the generated code for division is large
to ensure bit-true agreement between simulation and code generation.

- Integer division generated code contains protection against arithmetic
exceptions such as division by zero, INT_MIN/-1, and LONG_MIN/-1. If
you construct models making it impossible for exception triggering input
combinations to reach a division operation, the protection code generated
as part of the division operation is redundant.

- The index search method Evenly-spaced points requires a division
operation, which can be computationally expensive.

• Multiplication

- Product blocks are configured to do more than one division operation.
Multiplying all the denominator terms together first, and then
computing only one division operation improves accuracy and speed in
floating-point and fixed-point calculations.

- Product blocks are configured to do more than one multiplication or
division operation. Using several blocks, with each block performing
one multiplication or one division operation, allows you to control the
data type and scaling used for intermediate calculations. The choice of
data types for intermediate calculations affects precision, range errors,
and efficiency.

- Blocks that have the Saturate on integer overflow parameter
selected, and have an ideal multiplication product with a larger integer
size than the target integer size, must determine the ideal product in
generated C code. The C code required to do this multiplication is large
and slow.

9-51

9 Fixed-Point Advisor Reference

- Blocks with relative scaling of inputs and outputs must determine the
ideal product in the generated C code. The C code required to do this
multiplication is large and slow.

- Blocks that multiply signals with nonzero bias require extra steps to
implement the multiplication. Inserting Data Type Conversion blocks
remove the biases, and allow you to control data type and scaling for
intermediate calculations. The conversion is done once and all blocks in
the subsystem benefit from simpler, bias-free math.

- Blocks are multiplying signals with mismatched fractional slopes.
This mismatch causes the overall operation to involve two multiply
instructions.

- the Real-Time Workshop software generates a reciprocal operation
followed by a multiply operation for Product blocks that have a divide
operation for the first input, and a multiply operation for the second
input. If you reverse the inputs so that the multiplication occurs first
and the division occurs second, the Real-Time Workshop software
generates a single division operation for both inputs.

- An input with an invariant constant value is used as the denominator
in an online division operation. If the operation is changed to
multiplication, and the invariant input is replaced by its reciprocal, then
the division is done offline and the online operation is multiplication.
This leads to faster and smaller generated code.

• Addition

- For better accuracy and efficiency, nonzero bias terms are handled
separately and are not included in the conversion from input to output.
The ranges given for the input and output exclude their biases.

- Sum blocks can have a range error before an addition or subtraction
operation. For simplicity of design, the Sum block always casts each
input to the output data type and scaling before performing addition or
subtraction. The input range is different than the output range, so a
range error can occur when casting the input to the output data type.

- A Sum block has an input with a fractional slope that does not equal the
fractional slope of the output. This mismatch requires the Sum block to
multiply the input by the net slope adjustment each time the input is
converted to the output data type and scaling.

9-52

Prepare for Code Generation

- The net sum of the Sum block input biases does not equal the bias of the
output. The generated code includes one extra addition or subtraction
instruction to correctly account for the net bias adjustment.

• Using Relational Operator blocks

- The data types of the Relational Operator block inputs are not the same.
A conversion operation is required every time the block is executed. If
one of the inputs is invariant, then changing the data type and scaling of
the invariant input to match the other input improves the efficiency of
the model.

- The Relational Operator block inputs have different ranges, resulting in
a range error when casting, and a precision loss each time a conversion
is performed. You can insert Data Type Conversion blocks before the
Relational Operator block to convert both inputs to a common data type
that has sufficient range and precision to represent each input, making
the relational operation error-free.

- The inputs of the Relational Operator block have different fractional
slopes. The mismatch causes the Relational Operator block to require
a multiply operation each time the input with lesser positive range is
converted to the data type and scaling of the input with greater positive
range.

• Using MinMax blocks

- The input and output of the MinMax block have different data types. A
conversion operation is required every time the block is executed. The
model is more efficient with the same data types.

- The input of the MinMax block is converted to the data type and scaling
of the output before performing a relational operation, resulting in a
range error when casting, or a precision loss each time a conversion is
performed.

- The input of the MinMax block has a different fractional slope than the
output. This mismatch causes the MinMax block to require a multiply
operation each time the input is converted to the data type and scaling of
the output.

• Discrete-Time Integerator blocks have a complicated initial condition
setting. The initial condition for the Discrete-Time Integrator blocks are

9-53

9 Fixed-Point Advisor Reference

used to initialize the state and output. As a result, the output equation
generates excessive code and an extra global variable is required.

Analysis Results and Recommended Actions

Conditions Recommended Action

Integer division generated code is
large.

Set the Configuration Parameters
> Hardware Implementation >
Signed integer division rounds
to parameter to the recommended
value.

Protection code generated as part of
the division operation is redundant.

Verify that your model cannot cause
exceptions in division operations and
then remove redundant protection
code by setting the Configuration
Parameters > Optimization
> Remove code that protects
against division arithmetic
exceptions parameter.

Generated code is inefficient. Set the Function Block
Parameters > Round integer
calculations toward parameter to
the recommended value.

Lookup table input data is not evenly
spaced.

If the data is nontunable, adjust
the table to be evenly spaced. See
fixpt_look1_func_approx.

Lookup table input data is not evenly
spaced when quantized, but it is very
close to being evenly spaced.

If the data is nontunable, adjust
the table to be evenly spaced. See
fixpt_evenspace_cleanup.

Lookup table input data is evenly
spaced, but the spacing is not a
power of 2.

If the data is nontunable,
reimplement the table with
even power-of-2 spacing. See
fixpt_look1_func_approx.

9-54

Prepare for Code Generation

Conditions Recommended Action

Index search method is set to
Evenly-spaced points.

Specify a different Function Block
Parameters > Index search
method to avoid the division
operation.

Blocks require cumbersome
multiplication.

Restrict multiplication operations:
• So the product integer size is no

larger than the target integer size.

• To the recommended size.

Blocks multiply signals with nonzero
bias.

Insert a Data Type Conversion block
before and after the block containing
the multiplication operation.

Product blocks are multiplying
signals with mismatched fractional
slopes.

Change the scaling of the output
so that its fractional slope is the
product of the input fractional slopes.

Product blocks are configured to do
multiple division operations.

Multiply all the denominator terms
together, and then do a single
division using cascading Product
blocks.

Product blocks are configured to
do many multiplication or division
operations.

Split the operations across several
blocks, with each block performing
one multiplication or one division
operation.

Product blocks are configured with a
divide operation for the first input
and a multiply operation for the
second input.

Reverse the inputs so the multiply
operation occurs first and the
division operation occurs second.

An input with an invariant constant
value is used as the denominator in
an online division operation.

Change the operation to
multiplication, and replace the
invariant input by its reciprocal.

A Sum block has a different input
and output data type range.

Insert a Data Type Conversion block
before and after the Sum block.

9-55

9 Fixed-Point Advisor Reference

Conditions Recommended Action

A Sum block has an input with a
fractional slope that does not equal
the fractional slope of the output.

Change the scaling of the input or
output.

The net sum of the Sum block input
biases does not equal the bias of the
output.

Change the bias of the output,
making the net bias adjustment
zero.

The inputs of the Relational
Operator block have different data
types.

• Change the data type and scaling
of the invariant input to match
other inputs.

• Insert Data Type Conversion
blocks before the Relational
Operator block to convert both
inputs to a common data type.

The inputs of the Relational
Operator block have different
fractional slopes.

Change the scaling of either input.

The input and output of the MinMax
block have different data types.

Change the data type of the input or
output.

The input of the MinMax block has
a different fractional slope than the
output.

Change the scaling of the input or
the output.

The initial condition of the
Discrete-Time Integrator block is
used to initialize both the state and
the output.

Set the Function Block
Parameters > Use initial
condition as initial and reset
value for parameter to State only
(most efficient).

Limitations
This task requires Real-Time Workshop and Simulink® Fixed Point™ licenses.

See Also

• Lookup Table block

9-56

Prepare for Code Generation

• Remove code that protects against division arithmetic exceptions

9-57

9 Fixed-Point Advisor Reference

9-58

10

Function Reference

Global Changes (p. 10-1) Make global changes throughout
system or subsystem

Tools (p. 10-1) Get information about simulation or
value

Global Changes
autofixexp Automatically change scaling of

fixed-point data types

fixpt_instrument_purge Remove corrupt fixed-point
instrumentation from model

Tools
showfixptsimerrors Overflows from last simulation

showfixptsimranges Logged maximum and minimum
values from last fixed-point
simulation

10 Function Reference

10-2

11

Functions — Alphabetical
List

autofixexp

Purpose Automatically change scaling of fixed-point data types

Syntax autofixexp

Description The autofixexp script automatically changes the scaling for model
objects that specify fixed-point data types. However, if an object’s Lock
output scaling against changes by the autoscaling tool parameter
is selected, the script refrains from scaling that object.

This script collects range data for model objects, either from design
minimum and maximum values that objects specify explicitly, or from
logged minimum and maximum values that occur during simulation.
Based on these values, the tool changes the scaling of fixed-point data
types in a model so as to maximize precision and cover the range.

You can specify design minimum and maximum values for model objects
using parameters typically titled Output minimum and Output
maximum. See “Blocks That Allow Signal Range Specification” in
Using Simulink® for a list of Simulink blocks that permit you to specify
these values. In the autoscaling procedure that the autofixexp script
executes, design minimum and maximum values take precedence over
the simulation range.

If you intend to scale fixed-point data types using simulation minimum
and maximum values, the script yields meaningful results when
exercising the full range of values over which your design is meant
to run. Therefore, the simulation you run prior to using autofixexp
must simulate your design over its full intended operating range. It is
especially important that you use simulation inputs with appropriate
speed and amplitude profiles for dynamic systems. The response of a
linear dynamic system is frequency dependent. For example, a bandpass
filter will show almost no response to very slow and very fast sinusoid
inputs, whereas the signal of a sinusoid input with a frequency in the
passband will be passed or even significantly amplified. The response of
nonlinear dynamic systems can have complicated dependence on both
the signal speed and amplitude.

It is often good engineering practice to add a safety margin. The
autofixexp script can set the binary points so as to cover an even larger

11-2

autofixexp

range, thereby reducing the chance of an overflow occurring. However,
increased range results in reduced precision, so the safety margin that
you choose must be limited. To specify a safety margin:

1 Open the Fixed-Point Tool (see “Opening the Fixed-Point Tool” on
page 6-2).

2 In the Dialog pane, enter a value for the Percent safety margin
parameter. The default value is 0.

The Percent safety margin parameter allows you to specify a
range that differs from that defined by the design or simulation
range. For example, a value of 55 specifies that a range at least 55
percent larger is desired. A value of -15 specifies that a range up to
15 percent smaller is acceptable.

You should be aware that the scaling is not exact for the
binary-point-only case because the range is given (approximately)
by a power of two. The lower limit is exact, but the upper limit is
always one bit below a power of two. For example, if the maximum
value is 5 and the minimum value is -0.5, then any Percent safety
margin value from -20 to slightly under 60 would produce the same
binary point because these limits are less than a factor of two from
each other. The binary point selected will produce a range from -8
to +8 (minus a bit).

3 Click Apply to save your change.

Note If you already know the simulation range you need to cover,
you can use an alternate autoscaling technique described in the
fixptbestprec reference page.

See Also fxptdlg, showfixptsimranges

11-3

fixpt_instrument_purge

Purpose Remove corrupt fixed-point instrumentation from model

Syntax fixpt_instrument_purge
fixpt_instrument_purge(modelName, interactive)

Description The fixpt_instrument_purge script finds and removes fixed-point
instrumentation from a model left by the Fixed-Point Tool and the
fixed-point autoscaling script. The Fixed-Point Tool and the fixed-point
autoscaling script each add callbacks to a model. For example, the
Fixed-Point Tool appends commands to model-level callbacks. These
callbacks make the Fixed-Point Tool respond to simulation events.
Similarly, the autoscaling script adds instrumentation to some
parameter values that gathers information required by the script.

Normally, these types of instrumentation are automatically removed
from a model. The Fixed-Point Tool removes its instrumentation when
the model is closed. The autoscaling script removes its instrumentation
shortly after it is added. However, there are cases where abnormal
termination of a model leaves fixed-point instrumentation behind. The
purpose of fixpt_instrument_purge is to find and remove fixed-point
instrumentation left over from abnormal termination.

fixpt_instrument_purge(modelName, interactive) removes
instrumentation from model modelName. interactive is true by
default, which prompts you to make each change. When interactive
is set to false, all found instrumentation is automatically removed
from the model.

See Also autofixexp, fxptdlg

11-4

showfixptsimerrors

Purpose Overflows from last simulation

Syntax showfixptsimerrors

Description The showfixptsimerrors script displays any overflows from the
last fixed-point simulation. This information is also visible in the
Fixed-Point Tool.

See Also fxptdlg, showfixptsimranges

11-5

showfixptsimranges

Purpose Logged maximum and minimum values from last fixed-point simulation

Syntax showfixptsimranges

Description The showfixptsimranges script displays the logged maximum and
minimum values from the last fixed-point simulation.

The logged data is stored in the FixPtSimRanges cell array, which can
be accessed by the autofixexp automatic scaling script.

See Also autofixexp, fxptdlg, showfixptsimerrors

11-6

A

Writing Fixed-Point
S-Functions

This appendix discusses the API for user-written fixed-point S-functions,
which enables you to write Simulink® C S-functions that directly handle
fixed-point data types. Note that the API also provides support for standard
floating-point and integer data types. You can find the files and demos
associated with this API in the following locations:

• matlabroot/simulink/include/

• matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/

Data Type Support (p. A-3) Lists the data types supported by
the API and discusses the treatment
of integers and data-type-overridden
signals

Structure of the S-Function (p. A-6) Displays the basic structure of an
S-function that directly handles
fixed-point data types

Storage Containers (p. A-8) Discusses the containers used to
hold signals in simulation and code
generation

Data Type IDs (p. A-15) Describes the creation, assignment,
and usage of data type IDs, including
how to get and set information about
data types in an S-function

A Writing Fixed-Point S-Functions

Overflow Handling and Rounding
Methods (p. A-22)

Discusses the tokens you can
use to define overflow handling
and rounding methods in your
fixed-point S-function, and describes
the overflow logging structure

Creating MEX-Files (p. A-24) Describes the extra steps that you
need to take to create MEX-files for
fixed-point S-functions

Fixed-Point S-Function Examples
(p. A-26)

Walks through common tasks you
might want to perform within your
S-function

API Functions — Alphabetical List
(p. A-35)

Contains reference pages for the
API for user-written fixed-point
S-functions in alphabetical order

A-2

Data Type Support

Data Type Support

In this section...

“Supported Data Types” on page A-3

“The Treatment of Integers” on page A-4

“Data Type Override” on page A-4

Supported Data Types
The API for user-written fixed-point S-functions provides support for a variety
of Simulink® and Simulink® Fixed Point™ data types, including

• Built-in Simulink data types

- single

- double

- uint8

- int8

- uint16

- int16

- uint32

- int32

• Fixed-point Simulink data types, such as

- sfix16_En15

- ufix32_En16

- ufix128

- sfix37_S3_B5

• Data types resulting from a data type override with Scaled Doubles,
such as

- flts16

- flts16_En15

A-3

A Writing Fixed-Point S-Functions

- fltu32_S3_B5

The Treatment of Integers
The API treats integers as fixed-point numbers with trivial scaling. In [Slope
Bias] representation, fixed-point numbers are represented as

In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right of the
least significant bit for trivial scaling, meaning that the fraction length is zero.

In either case, trivial scaling means that the real-world value is equal to the
stored integer value.

All integers, including Simulink built-in integers such as uint8, are treated
as fixed-point numbers with trivial scaling by this API. However, Simulink
built-in integers are different in that their use does not cause a Simulink
Fixed Point software license to be checked out.

Data Type Override
The Fixed-Point Tool enables you to perform various data type overrides on
fixed-point signals in your simulations. This API can handle signals whose
data types have been overridden in this way:

• A signal that has been overridden with True singles is treated as a
Simulink built-in single.

• A signal that has been overridden with True doubles is treated as a
Simulink built-in double.

A-4

Data Type Support

• A signal that has been overridden with Scaled doubles is treated as being
of data type ScaledDouble.

ScaledDouble signals are a hybrid between floating-point and fixed-point
signals, in that they are stored as doubles with the scaling, sign, and word
length information retained. The value is stored as a floating-point double,
but as with a fixed-point number, the distinction between the stored integer
value and the real-world value remains. The scaling information is applied to
the stored integer double to obtain the real-world value. By storing the value
in a double, overflow and precision issues are almost always eliminated.
Refer to any individual API function reference page at the end of this
appendix to learn how that function treats ScaledDouble signals.

For more information about the Fixed-Point Tool and data type override,
refer to Chapter 6, “Fixed-Point Tool” and the fxptdlg reference page in the
Simulink documentation.

A-5

A Writing Fixed-Point S-Functions

Structure of the S-Function
The following diagram shows the basic structure of an S-function that directly
handles fixed-point data types.

The callouts in the diagram alert you to the fact that you must include
fixedpoint.h and fixedpoint.c at the appropriate places in the S-function.
The other elements of the S-function displayed in the diagram follow the

A-6

Structure of the S-Function

standard requirements for S-functions. If you need more information on this
topic, refer to Writing S-Functions in the Simulink® documentation.

A-7

A Writing Fixed-Point S-Functions

Storage Containers

In this section...

“Introduction” on page A-8

“Storage Containers in Simulation” on page A-8

“Storage Containers in Code Generation” on page A-12

Introduction
While coding with the API for user-written fixed-point S-functions, it is
important to keep in mind the difference between storage container size,
storage container word length, and signal word length. The sections that
follow discuss the containers used by the API to store signals in simulation
and code generation.

Storage Containers in Simulation
In simulation, signals are stored in one of several types of containers of a
specific size. Some signals are held in a structure called a “chunk array.”

Chunk Arrays
Any signal with a word size greater than 32 bits is held in a multiword array
called a “chunk array,” which is comprised of an integer number of “chunks.”
For these signals, when the specified number of bits is less than the size of the
chunk array, the signal bits are always stored in the least significant bits of
the container. The unused bits of the chunk array are always cleared to zero.

To create a chunk array, declare a variable of data type fxpChunkArray.

You should use the tokens described in the following table to get information
about chunk arrays in your S-function. Any time The MathWorks updates
the API, a simple recompile will update the values of the tokens as necessary.
Using the tokens will help you to maintain the readability and portability
of your code.

A-8

Storage Containers

Note In this appendix, “token” indicates enumerations or simple preprocessor
macros that are set by The MathWorks for use with this API. You cannot
change these tokens.

Tokens

Token Description Example of Use

FXP_ALL_ONES_CHUNK Useful for creating bit
masks

sfun_user_fxp_const.c
Line 281

FXP_CHUNK_T Data type of a chunk sfun_user_fxp_const.c
Line 281

FXP_BITS_PER_CHUNK Number of bits in each
chunk of a chunk array

sfun_user_fxp_const.c
Line 224

FXP_INDEX_LEAST_SIGNIFICANT_ CHUNK Position of the least
significant chunk—at the
right end or the left end of
the chunk array

Not available

FXP_INDEX_MOST_SIGNIFICANT_ CHUNK Position of the most
significant chunk—at the
right end or the left end of
the chunk array

Not available

FXP_MAX_BITS Maximum number of
bits that a Simulink®

supported data type can
have

sfun_user_fxp_const.c
Line 109

FXP_NUM_CHUNKS Number of chunks in a
chunk array

sfun_user_fxp_const.c
Line 226

Storage Container Categories
During simulation, fixed-point signals are held in one of seven types of
storage containers, as shown in the table below. In many cases, signals are
represented in containers with more bits than their specified word length.

A-9

A Writing Fixed-Point S-Functions

Fixed-Point Storage Containers

Container Category
Signal
Word Length

Container
Word Length Container Size

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 8 bits 1 byte

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16
(unsigned)

9 to 16 bits 16 bits 2 bytes

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32
(unsigned)

17 to 32 bits 32 bits 4 bytes

FXP_STORAGE_ CHUNKARRAY 33 to FXP_MAX_BITS FXP_MAX_BITS FXP_NUM_CHUNKS*

sizeof(FXP_CHUNK_T)

When the number of bits in the signal word length is less than the size of the
container, the word length bits are always stored in the least significant bits
of the container. The remaining container bits must be set to specific values:

• If the signal is stored in a chunk array, the remaining bits must be cleared
to zero.

• If the signal is not stored in a chunk array, the remaining bits must be
sign extended:

- If the data type is unsigned, the sign extension bits must be cleared
to zero.

- If the data type is signed, the sign extension bits must be set to one for
strictly negative numbers, and cleared to zero otherwise.

For example, a signal of data type sfix6_En4 is held in a FXP_STORAGE_INT8
container. The signal is held in the six least significant bits. The remaining
two bits are set to zero when the signal is positive or zero, and to one when it
is negative.

A-10

Storage Containers

A signal of data type ufix6_En4 is held in a FXP_STORAGE_UINT8 container.
The signal is held in the six least significant bits. The remaining two bits
are always cleared to zero.

The signal and storage container word lengths are returned by the
ssGetDataTypeFxpWordLength and ssGetDataTypeFxpContainWordLen
functions, respectively. The storage container size is returned by the
ssGetDataTypeStorageContainerSize function. The container category
is returned by the ssGetDataTypeStorageContainCat function, which in
addition to those in the table above, can also return the following values.

A-11

A Writing Fixed-Point S-Functions

Other Storage Containers

Container Category Description

FXP_STORAGE_UNKOWN Returned if the storage container category is unknown

FXP_STORAGE_SINGLE The container type for a Simulink single

FXP_STORAGE_DOUBLE The container type for a Simulink double

FXP_STORAGE_SCALEDDOUBLE The container type for a data type that has been overridden with
Scaled doubles

Storage Containers in Simulation Example
An sfix24_En10 data type has a word length of 24, but is actually stored in
32 bits during simulation. For this signal,

• ssGetDataTypeStorageContainCat returns FXP_STORAGE_INT32.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4, which is
the storage container size in bytes.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type word
length in bits.

Storage Containers in Code Generation
The storage containers used by this API for code generation are not always the
same as those used for simulation. During code generation, a native C data
type is always used. Floating-point data types are held in C double or float.
Fixed-point data types are held in C signed and unsigned char, short, int, or
long. If a data type used is too big to fit inside a long, code generation errors
out. Multiword fixed-point signals are not supported in code generation.

Emulation
Because it is valuable for rapid prototyping and hardware-in-the-loop testing,
the emulation of smaller signals inside larger containers is supported in code
generation. For example, a 29-bit signal is supported in code generation
if there is a C data type available that has at least 32 bits. The rules for

A-12

Storage Containers

placing a smaller signal into a larger container, and for dealing with the extra
container bits, are the same in code generation as for simulation.

If a smaller signal is emulated inside a larger storage container in simulation,
it is not necessarily emulated in code generation. For example, a 24-bit signal
is emulated in a 32-bit storage container in simulation. However, some
DSP chips have native support for 24-bit quantities. On such a target, the
C compiler can define an int or a long to be exactly 24 bits. In this case,
the 24-bit signal is held in a 32-bit container in simulation, and in a 24-bit
container in code generation.

Conversely, a signal that was not emulated in simulation might need to be
emulated in code generation. For example, some DSP chips have minimal
support for integers. On such chips, char, short, int, and long might all
be defined to 32 bits. In that case, it is necessary to emulate 8- and 16-bit
fixed-point data types in code generation.

Chunk Arrays
In general, multiword fixed-point data types are not supported in code
generation. However, fixed-point signals that use multiword chunk arrays
in simulation are supported in code generation if they fit into a long for the
target compiler.

For example, some compilers define a long to be 64 bits. For these compilers,
a 33-to-64-bit signal that was held in a chunk array during simulation would
be held in a long during code generation. Many other compilers, however,
define a long to be 32 bits. Any 33-bit or greater signal held in a chunk array
during simulation would cause code generation to error out for these targets.

Storage Container TLC Functions
Since the mapping of storage containers in simulation to storage containers
in code generation is not one-to-one, the Target Language Compiler (TLC)
functions for storage containers are different from those in simulation:

• FixPt_DataTypeNativeType

• FixPt_DataTypeStorageDouble

• FixPt_DataTypeStorageSingle

A-13

A Writing Fixed-Point S-Functions

• FixPt_DataTypeStorageScaledDouble

• FixPt_DataTypeStorageSInt

• FixPt_DataTypeStorageUInt

• FixPt_DataTypeStorageSLong

• FixPt_DataTypeStorageULong

• FixPt_DataTypeStorageSShort

• FixPt_DataTypeStorageUShort

The first of these TLC functions, FixPt_DataTypeNativeType, is the
closest analogue to ssGetDataTypeStorageContainCat in simulation.
FixPt_DataTypeNativeType returns a TLC string that specifies the type of
the storage container, and the Real-Time Workshop® product automatically
inserts a typedef that maps the string to a native C data type in the
generated code.

For example, consider a fixed-data type that is held in FXP_STORAGE_INT8 in
simulation. FixPt_DataTypeNativeType will return int8_T. The int8_T will
be typdef’d to a char, short, int, or long in the generated code, depending
upon what is appropriate for the target compiler.

The remaining TLC functions listed above return TRUE or FALSE depending
on whether a particular standard C data type is used to hold a given
API-registered data type. Note that these functions do not necessarily give
mutually exclusive answers for a given registered data type, due to the fact
that C data types can potentially overlap in size. In C,

One or more of these C data types can be, and very often are, the same size.

A-14

Data Type IDs

Data Type IDs

In this section...

“The Assignment of Data Type IDs” on page A-15

“Registering Data Types” on page A-16

“Setting and Getting Data Types” on page A-18

“Getting Information About Data Types” on page A-19

“Converting Data Types” on page A-21

The Assignment of Data Type IDs
Each data type used in your S-function is assigned a data type ID. You should
always use data type IDs to get and set information about data types in
your S-function.

In general, the Simulink® software assigns data type IDs during model
initialization on a “first come, first served” basis. For example, consider the
generalized schema of a block diagram below.

The Simulink software assigns a data type ID for each output data type in the
diagram in the order it is requested. For simplicity, assume that the order
of request occurs from left to right. Therefore, the output of block A may be
assigned data type ID 13, and the output of block B may be assigned data type
ID 14. The output data type of block C is the same as that of block A, so
the data type ID assigned to the output of block C is also 13. The output of
block D is assigned data type ID 15.

Now if the blocks in the model are rearranged,

A-15

A Writing Fixed-Point S-Functions

The Simulink software still assigns the data type IDs in the order in which
they are used. Therefore each data type might end up with a different data
type ID. The output of block A is still assigned data type ID 13. The output
of block D is now next in line and is assigned data type ID 14. The output of
block B is assigned data type ID 15. The output data type of block C is still
the same as that of block A, so it is also assigned data type ID 13.

This table summarizes the two cases described above.

Block
Data Type ID in
Model_1

Data Type ID in
Model_2

A 13 13

B 14 15

C 13 13

D 15 14

This example illustrates that there is no strict relationship between the
attributes of a data type and the value of its data type ID. In other words, the
data type ID is not assigned based on the characteristics of the data type it is
representing, but rather on when that data type is first needed.

Note Because of the nature of the assignment of data type IDs, you should
always use API functions to extract information from a data type ID about a
data type in your S-function.

Registering Data Types
The functions in the following table are available in the API for user-written
fixed-point S-functions for registering data types in simulation. Each of these

A-16

Data Type IDs

functions will return a data type ID. To see an example of a function being
used, go to the file and line indicated in the table.

Data Type Registration Functions

Function Description Example of Use

ssRegisterDataTypeFxpBinaryPoint Register a fixed-point
data type with
binary-point-only
scaling and return its
data type ID

sfun_user_fxp_asr.c
Line 252

ssRegisterDataTypeFxpFSlopeFixExpBias Register a fixed-point
data type with [Slope
Bias] scaling specified
in terms of fractional
slope, fixed exponent,
and bias, and return
its data type ID

Not Available

ssRegisterDataTypeFxpScaledDouble Register a scaled
double data type with
[Slope Bias] scaling
specified in terms of
fractional slope, fixed
exponent, and bias,
and return its data
type ID

Not Available

ssRegisterDataTypeFxpSlopeBias Register a data type
with [Slope Bias]
scaling and return its
data type ID

sfun_user_fxp_dtprop.c
Line 319

Preassigned Data Type IDs
The Simulink software registers its built-in data types, and those data types
always have preassigned data type IDs. The built-in data type IDs are given
by the following tokens:

• SS_DOUBLE

A-17

A Writing Fixed-Point S-Functions

• SS_SINGLE

• SS_INT8

• SS_UINT8

• SS_INT16

• SS_UINT16

• SS_INT32

• SS_UINT32

• SS_BOOLEAN

You do not need to register these data types. If you attempt to register a
built-in data type, the registration function simply returns the preassigned
data type ID.

Setting and Getting Data Types
Data type IDs are used to specify the data types of input and output ports,
run-time parameters, and DWork states. To set fixed-point data types for
quantities in your S-function, the procedure is as follows:

1 Register a data type using one of the functions listed in the table Data Type
Registration Functions on page A-17. A data type ID is returned to you.

Alternately, you can use one of the preassigned data type IDs of the
Simulink built-in data types.

2 Use the data type ID to set the data type for an input or output port,
run-time parameter, or DWork state using one of the following functions:

• ssSetInputPortDataType

• ssSetOutputPortDataType

• ssSetRunTimeParamInfo

• ssSetDWorkDataType

To get the data type ID of an input or output port, run-time parameter, or
DWork state, use one of the following functions:

A-18

Data Type IDs

• ssGetInputPortDataType

• ssGetOutputPortDataType

• ssGetRunTimeParamInfo

• ssGetDWorkDataType

Getting Information About Data Types
You can use data type IDs with functions to get information about the
built-in and registered data types in your S-function. The functions in the
following tables are available in the API for extracting information about
registered data types. To see an example of a function being used, go to
the file and line indicated in the table. Note that data type IDs can also be
used with all the standard data type access methods in simstruc.h, such as
ssGetDataTypeSize.

Storage Container Information Functions

Function Description Example of Use

ssGetDataTypeFxpContainWordLen Return the word length
of the storage container
of a registered data type

sfun_user_fxp_
ContainWordLenProbe.c
Line 181

ssGetDataTypeStorageContainCat Return the storage
container category of a
registered data type

sfun_user_fxp_asr.c
Line 294

ssGetDataTypeStorageContainerSize Return the storage
container size of a
registered data type

sfun_user_fxp_
StorageContainSizeProbe.c
Line 171

Signal Data Type Information Functions

Function Description Example of Use

ssGetDataTypeFxpIsSigned Determine whether a
fixed-point registered data
type is signed or unsigned

sfun_user_fxp_asr.c
Line 254

A-19

A Writing Fixed-Point S-Functions

Signal Data Type Information Functions (Continued)

Function Description Example of Use

ssGetDataTypeFxpWordLength Return the word length of a
fixed-point registered data
type

sfun_user_fxp_asr.c
Line 255

ssGetDataTypeIsFixedPoint Determine whether a
registered data type is a
fixed-point data type

sfun_user_fxp_const.c
Line 127

ssGetDataTypeIsFloatingPoint Determine whether a
registered data type is a
floating-point data type

sfun_user_fxp_
IsFloatingPointProbe.c
Line 176

ssGetDataTypeIsFxpFltApiCompat Determine whether a
registered data type is
supported by the API for
user-written fixed-point
S-functions

sfun_user_fxp_asr.c
Line 184

ssGetDataTypeIsScalingPow2 Determine whether a
registered data type has
power-of-two scaling

sfun_user_fxp_asr.c
Line 203

ssGetDataTypeIsScalingTrivial Determine whether the
scaling of a registered data
type is slope = 1, bias = 0

sfun_user_fxp_
IsScalingTrivialProbe.c
Line 171

Signal Scaling Information Functions

Function Description Example of Use

ssGetDataTypeBias Return the bias of a registered
data type

sfun_user_fxp_dtprop.c
Line 243

ssGetDataTypeFixedExponent Return the exponent of the slope
of a registered data type

sfun_user_fxp_dtprop.c
Line 237

ssGetDataTypeFracSlope Return the fractional slope of a
registered data type

sfun_user_fxp_dtprop.c
Line 234

A-20

Data Type IDs

Signal Scaling Information Functions (Continued)

Function Description Example of Use

ssGetDataTypeFractionLength Return the fraction length of
a registered data type with
power-of-two scaling

sfun_user_fxp_asr.c
Line 256

ssGetDataTypeTotalSlope Return the total slope of the
scaling of a registered data type

sfun_user_fxp_dtprop.c
Line 240

Converting Data Types
The functions in the following table allow you to convert values between
registered data types in your fixed-point S-function.

Data Type Conversion Functions

Function Description Example of Use

ssFxpConvert Convert a value from one data type to
another data type.

Not Available

ssFxpConvertFromRealWorldValue Convert a value of data type double
to another data type.

Not Available

ssFxpConvertToRealWorldValue Convert a value of any data type to a
double.

Not Available

A-21

A Writing Fixed-Point S-Functions

Overflow Handling and Rounding Methods

In this section...

“Tokens for Overflow Handling and Rounding Methods” on page A-22

“Overflow Logging Structure” on page A-23

Tokens for Overflow Handling and Rounding
Methods
The API for user-written fixed-point S-functions provides functions for some
mathematical operations, such as conversions. When these operations
are performed, a loss of precision or overflow may occur. The tokens in
the following tables allow you to control the way an API function handles
precision loss and overflow. The data type of the overflow handling methods is
fxpModeOverflow. The data type of the rounding modes is fxpModeRounding.

Overflow Handling Tokens

Token Description Example of Use

FXP_OVERFLOW_SATURATE Saturate overflows Not Available

FXP_OVERFLOW_WRAP Wrap overflows Not Available

Rounding Method Tokens

Token Description Example of Use

FXP_ROUND_CEIL Round to the closest representable number in the
direction of positive infinity

Not Available

FXP_ROUND_FLOOR Round to the closest representable number in the
direction of negative infinity

Not Available

FXP_ROUND_NEAR Round to the closest representable number, with
the exact midpoint rounded in the direction of
positive infinity

Not Available

FXP_ROUND_ZERO Round to the closest representable number in the
direction of zero

Not Available

A-22

Overflow Handling and Rounding Methods

Overflow Logging Structure
Math functions of the API, such as ssFxpConvert, can encounter overflows
when carrying out an operation. These functions provide a mechanism to log
the occurrence of overflows and to report that log back to the caller.

You can use a fixed-point overflow logging structure in your S-function by
defining a variable of data type fxpOverflowLogs. Some API functions, such
as ssFxpConvert, accept a pointer to this structure as an argument. The
function initializes the logging structure and maintains a count of each the
following events that occur while the function is being performed:

• Overflows

• Saturations

• Divide-by-zeros

When a function that accepts a pointer to the logging structure is invoked, the
function initializes the event counts of the structure to zero. The requested
math operations are then carried out. Each time an event is detected, the
appropriate event count is incremented by one.

The following fields contain the event-count information of the structure:

• OverflowOccurred

• SaturationOccurred

• DivisionByZeroOccurred

A-23

A Writing Fixed-Point S-Functions

Creating MEX-Files

In this section...

“Introduction” on page A-24

“MEX-Files on UNIX®” on page A-24

“MEX-Files on Windows®” on page A-24

Introduction
In addition to including fixedpoint.c and fixedpoint.h (see “Structure of
the S-Function” on page A-6), the sections that follow describe additional
steps you need to take to create a MEX-file for your user-written fixed-point
S-function.

For general information on creating MEX-files, refer to Writing Wrapper
S-Functions in the Real-Time Workshop® documentation.

MEX-Files on UNIX®

On UNIX® systems, to create a MEX-file for a user-written fixed-point
S-function, you need to pass an extra argument, -lfixedpoint, to the mex
command. For example,

mex('sfun_user_fxp_asr.c','-lfixedpoint')

MEX-Files on Windows®

On Windows® systems, to create a MEX-file for a user-written fixed-point
S-function, you need to pass an extra argument to the mex command that
identifies the appropriate version of libfixedpoint.lib. The version of
libfixedpoint.lib that you use depends on the compiler that you specify
when mex -setup is run. The possible versions, which are installed with the
Simulink® software, are as follows:

• extern\lib\win32\borland\libfixedpoint.lib

• extern\lib\win32\lcc\libfixedpoint.lib

• extern\lib\win32\microsoft\libfixedpoint.lib

A-24

Creating MEX-Files

• extern\lib\win32\watcom\libfixedpoint.lib

For example, if Version 6.0 of the Microsoft® Visual C++® software is the
compiler that the mex command is configured to use,

mex('sfun_user_fxp_asr.c',[matlabroot,'\extern\lib\win32\...
microsoft\libfixedpoint.lib'])

If your C compiler is not listed, consider the following options:

• Use the LCC freeware compiler. LCC is normally installed when the
MATLAB® software is installed. When you run mex -setup on a Windows
system, LCC should be listed as an option.

• Your compiler may provide tools for translating one of the
libfixedpoint.lib files or extern/include/libfixedpoint.def to the
required format.

A-25

A Writing Fixed-Point S-Functions

Fixed-Point S-Function Examples

In this section...

“List of Fixed-Point S-Function Examples” on page A-26

“Getting the Input Port Data Type” on page A-27

“Setting the Output Port Data Type” on page A-29

“Interpreting an Input Value” on page A-30

“Writing an Output Value” on page A-32

“Using the Input Data Type to Determine the Output Data Type” on page
A-34

List of Fixed-Point S-Function Examples
The following files in
matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/ are examples of
S-functions written with the API for user-written fixed-point S-functions:

• sfun_user_fxp_asr.c

• sfun_user_fxp_BiasProbe.c

• sfun_user_fxp_const.c

• sfun_user_fxp_ContainWordLenProbe.c

• sfun_user_fxp_dtprop.c

• sfun_user_fxp_FixedExponentProbe.c

• sfun_user_fxp_FracLengthProbe.c

• sfun_user_fxp_FracSlopeProbe.c

• sfun_user_fxp_IsFixedPointProbe.c

• sfun_user_fxp_IsFloatingPointProbe.c

• sfun_user_fxp_IsFxpFltApiCompatProbe.c

• sfun_user_fxp_IsScalingPow2Probe.c

• sfun_user_fxp_IsScalingTrivialProbe.c

A-26

Fixed-Point S-Function Examples

• sfun_user_fxp_IsSignedProbe.c

• sfun_user_fxp_prodsum.c

• sfun_user_fxp_StorageContainCatProbe.c

• sfun_user_fxp_StorageContainSizeProbe.c

• sfun_user_fxp_TotalSlopeProbe.c

• sfun_user_fxp_U32BitRegion.c

• sfun_user_fxp_WordLengthProbe.c

The sections that follow present smaller portions of code that focus on specific
kinds of tasks you might want to perform within your S-function.

Getting the Input Port Data Type
Within your S-function, you might need to know the data types of different
ports, run-time parameters, and DWorks. In each case, you will need to get
the data type ID of the data type, and then use functions from this API to
extract information about the data type.

For example, suppose you need to know the data type of your input port. To
do this,

1 Use ssGetInputPortDataType. The data type ID of the input port is
returned.

2 Use API functions to extract information about the data type.

The following lines of example code are from sfun_user_fxp_dtprop.c.

In lines 191 and 192, ssGetInputPortDataType is used to get the data type
ID for the two input ports of the S-function:

dataTypeIdU0 = ssGetInputPortDataType(S, 0);
dataTypeIdU1 = ssGetInputPortDataType(S, 1);

Further on in the file, the data type IDs are used with API functions to get
information about the input port data types. In lines 205 through 226, a check
is made to see whether the input port data types are single or double:

A-27

A Writing Fixed-Point S-Functions

storageContainerU0 = ssGetDataTypeStorageContainCat(S,
dataTypeIdU0);

storageContainerU1 = ssGetDataTypeStorageContainCat(S,
dataTypeIdU1);

if (storageContainerU0 == FXP_STORAGE_DOUBLE ||
storageContainerU1 == FXP_STORAGE_DOUBLE)

{
/* Doubles take priority over all other rules.
* If either of first two inputs is double,
* then third input is set to double.
*/

dataTypeIdU2Desired = SS_DOUBLE;
}
else if (storageContainerU0 == FXP_STORAGE_SINGLE ||

storageContainerU1 == FXP_STORAGE_SINGLE)
{

/* Singles take priority over all other rules,
* except doubles.
* If either of first two inputs is single
* then third input is set to single.
*/

dataTypeIdU2Desired = SS_SINGLE;
}
else

In lines 227 through 244, additional API functions are used to get information
about the data types if they are neither single nor double:

{
isSignedU0 = ssGetDataTypeFxpIsSigned(S, dataTypeIdU0);
isSignedU1 = ssGetDataTypeFxpIsSigned(S, dataTypeIdU1);

wordLengthU0 = ssGetDataTypeFxpWordLength(S, dataTypeIdU0);
wordLengthU1 = ssGetDataTypeFxpWordLength(S, dataTypeIdU1);

fracSlopeU0 = ssGetDataTypeFracSlope(S, dataTypeIdU0);
fracSlopeU1 = ssGetDataTypeFracSlope(S, dataTypeIdU1);

fixedExponentU0 = ssGetDataTypeFixedExponent(S,dataTypeIdU0);

A-28

Fixed-Point S-Function Examples

fixedExponentU1 = ssGetDataTypeFixedExponent(S,dataTypeIdU1);

totalSlopeU0 = ssGetDataTypeTotalSlope(S, dataTypeIdU0);
totalSlopeU1 = ssGetDataTypeTotalSlope(S, dataTypeIdU1);

biasU0 = ssGetDataTypeBias(S, dataTypeIdU0);
biasU1 = ssGetDataTypeBias(S, dataTypeIdU1);

}

The functions used above return whether the data types are signed or
unsigned, as well as their word lengths, fractional slopes, exponents, total
slopes, and biases. Together, these quantities give full information about the
fixed-point data types of the input ports.

Setting the Output Port Data Type
You may want to set the data type of various ports, run-time parameters, or
DWorks in your S-function.

For example, suppose you want to set the output port data type of your
S-function. To do this,

1 Register a data type by using one of the functions listed in the table Data
Type Registration Functions on page A-17. A data type ID is returned.

Alternately, you can use one of the predefined data type IDs of the
Simulink® built-in data types.

2 Use ssSetOutputPortDataType with the data type ID from Step 1 to set
the output port to the desired data type.

In the example below from lines 336 - 352 of sfun_user_fxp_const.c,
ssRegisterDataTypeFxpBinaryPoint is used to register the data type.
ssSetOutputPortDataType then sets the output data type either to the given
data type ID, or to be dynamically typed:

/* Register data type
*/

if (notSizesOnlyCall)
{

DTypeId DataTypeId = ssRegisterDataTypeFxpBinaryPoint(

A-29

A Writing Fixed-Point S-Functions

S,
V_ISSIGNED,
V_WORDLENGTH,
V_FRACTIONLENGTH,

1 /* true means obey data type override setting for
this subsystem */);

ssSetOutputPortDataType(S, 0, DataTypeId);
}
else
{

ssSetOutputPortDataType(S, 0, DYNAMICALLY_TYPED);
}

Interpreting an Input Value
Suppose you need to get the value of the signal on your input port to use
in your S-function. You should write your code so that the pointer to the
input value is properly typed, so that the values read from the input port are
interpreted correctly. To do this, you can use these steps, which are shown
in the example code below:

1 Create a void pointer to the value of the input signal.

2 Get the data type ID of the input port using ssGetInputPortDataType.

3 Use the data type ID to get the storage container type of the input.

4 Have a case for each input storage container type you want to handle.
Within each case, you will need to perform the following in some way:

• Create a pointer of the correct type according to the storage container,
and cast the original void pointer into the new fully typed pointer (see a
and c).

• You can now store and use the value by dereferencing the new, fully
typed pointer (see b and d).

For example,

static void mdlOutputs(SimStruct *S, int_T tid)
{

A-30

Fixed-Point S-Function Examples

const void *pVoidIn =
(const void *)ssGetInputPortSignal(S, 0); (1)

DTypeId dataTypeIdU0 = ssGetInputPortDataType(S, 0); (2)

fxpStorageContainerCategory storageContainerU0 =
ssGetDataTypeStorageContainCat(S, dataTypeIdU0); (3)

switch (storageContainerU0)
{

case FXP_STORAGE_UINT8: (4)
{

const uint8_T *pU8_Properly_Typed_Pointer_To_U0; (a)

uint8_T u8_Stored_Integer_U0; (b)

pU8_Properly_Typed_Pointer_To_U0 =
(const uint8_T *)pVoidIn; (c)

u8_Stored_Integer_U0 =
*pU8_Properly_Typed_Pointer_To_U0; (d)

<snip: code that uses input when it's in a uint8_T>
}
break;

case FXP_STORAGE_INT8: (4)
{

const int8_T *pS8_Properly_Typed_Pointer_To_U0; (a)

int8_T s8_Stored_Integer_U0; (b)

pS8_Properly_Typed_Pointer_To_U0 =
(const int8_T *)pVoidIn; (c)

s8_Stored_Integer_U0 =
*pS8_Properly_Typed_Pointer_To_U0; (d)

<snip: code that uses input when it's in a int8_T>
}

A-31

A Writing Fixed-Point S-Functions

break;

Writing an Output Value
Suppose you need to write the value of the output signal to the output port in
your S-function. You should write your code so that the pointer to the output
value is properly typed. To do this, you can use these steps, which are followed
in the example code below:

1 Create a void pointer to the value of the output signal.

2 Get the data type ID of the output port using ssGetOutputPortDataType.

3 Use the data type ID to get the storage container type of the output.

4 Have a case for each output storage container type you want to handle.
Within each case, you will need to perform the following in some way:

• Create a pointer of the correct type according to the storage container,
and cast the original void pointer into the new fully typed pointer (see a
and c).

• You can now write the value by dereferencing the new, fully typed
pointer (see b and d).

For example,

static void mdlOutputs(SimStruct *S, int_T tid)
{

<snip>

void *pVoidOut = ssGetOutputPortSignal(S, 0); (1)

DTypeId dataTypeIdY0 = ssGetOutputPortDataType(S, 0); (2)

fxpStorageContainerCategory storageContainerY0 =
ssGetDataTypeStorageContainCat(S,
dataTypeIdY0); (3)

switch (storageContainerY0)
{

case FXP_STORAGE_UINT8: (4)

A-32

Fixed-Point S-Function Examples

{
const uint8_T *pU8_Properly_Typed_Pointer_To_Y0; (a)

uint8_T u8_Stored_Integer_Y0; (b)

<snip: code that puts the desired output stored integer
value in to temporary variable u8_Stored_Integer_Y0>

pU8_Properly_Typed_Pointer_To_Y0 =
(const uint8_T *)pVoidOut; (c)

*pU8_Properly_Typed_Pointer_To_Y0 =
u8_Stored_Integer_Y0; (d)

}
break;

case FXP_STORAGE_INT8: (4)
{

const int8_T *pS8_Properly_Typed_Pointer_To_Y0; (a)

int8_T s8_Stored_Integer_Y0; (b)

<snip: code that puts the desired output stored integer
value in to temporary variable s8_Stored_Integer_Y0>

pS8_Properly_Typed_Pointer_To_Y0 =
(const int8_T *)pVoidY0; (c)

*pS8_Properly_Typed_Pointer_To_Y0 =
s8_Stored_Integer_Y0; (d)

}
break;

<snip>

A-33

A Writing Fixed-Point S-Functions

Using the Input Data Type to Determine the Output
Data Type
The following sample code from lines 243 through 261 of sfun_user_fxp_asr.c
gives an example of using the data type of the input to your S-function to
calculate the output data type. Notice that in this code

• The output is signed or unsigned to match the input (a).

• The output is the same word length as the input (b).

• The fraction length of the output depends on the input fraction length
and the number of shifts (c).

#define MDL_SET_INPUT_PORT_DATA_TYPE
static void mdlSetInputPortDataType(SimStruct *S, int port,

DTypeId dataTypeIdInput)
{

if (isDataTypeSupported(S, dataTypeIdInput))
{

DTypeId dataTypeIdOutput;

ssSetInputPortDataType(S, port, dataTypeIdInput);

dataTypeIdOutput = ssRegisterDataTypeFxpBinaryPoint(
S,

ssGetDataTypeFxpIsSigned(S, dataTypeIdInput), (a)
ssGetDataTypeFxpWordLength(S, dataTypeIdInput), (b)
ssGetDataTypeFractionLength(S, dataTypeIdInput)

- V_NUM_BITS_TO_SHIFT_RGHT, (c)
0 /* false means do NOT obey data type override

setting for this subsystem */);

ssSetOutputPortDataType(S, 0, dataTypeIdOutput);
}

}

A-34

API Functions — Alphabetical List

API Functions — Alphabetical List

A-35

ssFxpConvert

Purpose Convert value from one data type to another

Syntax extern void ssFxpConvert (SimStruct *S,
void *pVoidDest,
size_t sizeofDest,
DTypeId dataTypeIdDest,
const void *pVoidSrc,
size_t sizeofSrc,
DTypeId dataTypeIdSrc,
fxpModeRounding roundMode,
fxpModeOverflow overflowMode,
fxpOverflowLogs *pFxpOverflowLogs)

Arguments S
SimStruct representing an S-function block.

pVoidDest
Pointer to the converted value.

sizeofDest
Size in memory of the converted value.

dataTypeIdDest
Data type ID of the converted value.

pVoidSrc
Pointer to the value you want to convert.

sizeofSrc
Size in memory of the value you want to convert.

dataTypeIdSrc
Data type ID of the value you want to convert.

roundMode
Rounding mode you want to use if a loss of precision is necessary
during the conversion. Possible values are FXP_ROUND_CEIL,
FXP_ROUND_FLOOR, FXP_ROUND_NEAR, and FXP_ROUND_ZERO.

A-36

ssFxpConvert

overflowMode
Overflow mode you want to use if overflow occurs during the
conversion. Possible values are FXP_OVERFLOW_SATURATE and
FXP_OVERFLOW_WRAP.

pFxpOverflowLogs
Pointer to the fixed-point overflow logging structure.

Description This function converts a value of any registered built-in or fixed-point
data type to any other registered built-in or fixed-point data type.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

None

See Also ssFxpConvertFromRealWorldValue, ssFxpConvertToRealWorldValue

A-37

ssFxpConvertFromRealWorldValue

Purpose Convert value of data type double to another data type

Syntax extern void ssFxpConvertFromRealWorldValue
(SimStruct *S,
void *pVoidDest,
size_t sizeofDest,
DTypeId dataTypeIdDest,
double dblRealWorldValue,
fxpModeRounding roundMode,
fxpModeOverflow overflowMode,
fxpOverflowLogs *pFxpOverflowLogs)

Arguments S
SimStruct representing an S-function block.

pVoidDest
Pointer to the converted value.

sizeofDest
Size in memory of the converted value.

dataTypeIdDest
Data type ID of the converted value.

dblRealWorldValue
Double value you want to convert.

roundMode
Rounding mode you want to use if a loss of precision is necessary
during the conversion. Possible values are FXP_ROUND_CEIL,
FXP_ROUND_FLOOR, FXP_ROUND_NEAR, and FXP_ROUND_ZERO.

overflowMode
Overflow mode you want to use if overflow occurs during the
conversion. Possible values are FXP_OVERFLOW_SATURATE and
FXP_OVERFLOW_WRAP.

pFxpOverflowLogs
Pointer to the fixed-point overflow logging structure.

A-38

ssFxpConvertFromRealWorldValue

Description This function converts a double value to any registered built-in or
fixed-point data type.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

None

See Also ssFxpConvert, ssFxpConvertToRealWorldValue

A-39

ssFxpConvertToRealWorldValue

Purpose Convert value of any data type to double

Syntax extern double ssFxpConvertToRealWorldValue (SimStruct *S,
const void *pVoidSrc,
size_t sizeofSrc,
DTypeId dataTypeIdSrc)

Arguments S
SimStruct representing an S-function block.

pVoidSrc
Pointer to the value you want to convert.

sizeofSrc
Size in memory of the value you want to convert.

dataTypeIdSrc
Data type ID of the value you want to convert.

Description This function converts a value of any registered built-in or fixed-point
data type to a double.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

None

See Also ssFxpConvert, ssFxpConvertFromRealWorldValue

A-40

ssFxpGetU32BitRegion

Purpose Return stored integer value for 32-bit region of real, scalar signal
element

Syntax extern uint32 ssFxpGetU32BitRegion(SimStruct *S,
const void *pVoid
DTypeId dataTypeId
unsigned int regionIndex)

Arguments S
SimStruct representing an S-function block.

pVoid
Pointer to the storage container of the real, scalar signal element
in which the 32-bit region of interest resides.

dataTypeId
Data type ID of the registered data type corresponding to the
signal.

regionIndex
Index of the 32-bit region whose stored integer value you want to
retrieve, where 0 accesses the least significant 32-bit region.

Description This function returns the stored integer value in the 32-bit region
specified by regionIndex, associated with the fixed-point data type
designated by dataTypeId. You can use this function with any
fixed-point data type, including those with word sizes less than 32 bits.
If the fixed-point word size is less than 32 bits, the remaining bits are
sign extended.

This function generates an error if dataTypeId represents a
floating-point data type.

To view a demo model whose S-functions use the
ssFxpGetU32BitRegion function, at the MATLAB® prompt,
enter fxpdemo_sfun_user_U32BitRegion.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

A-41

ssFxpGetU32BitRegion

Languages C

See Also ssFxpSetU32BitRegion

A-42

ssFxpSetU32BitRegion

Purpose Set stored integer value for 32-bit region of real, scalar signal element

Syntax extern ssFxpSetU32BitRegion(SimStruct *S,
void *pVoid
DTypeId dataTypeId
uint32 regionValue
unsigned int regionIndex)

Arguments S
SimStruct representing an S-function block.

pVoid
Pointer to the storage container of the real, scalar signal element
in which the 32-bit region of interest resides.

dataTypeId
Data type ID of the registered data type corresponding to the
signal.

regionValue
Stored integer value that you want to assign to a 32-bit region.

regionIndex
Index of the 32-bit region whose stored integer value you want to
set, where 0 accesses the least significant 32-bit region.

Description This function sets regionValue as the stored integer value of the 32-bit
region specified by regionIndex, associated with the fixed-point data
type designated by dataTypeId. You can use this function with any
fixed-point data type, including those with word sizes less than 32
bits. If the fixed-point word size is less than 32 bits, ensure that the
remaining bits are sign extended.

This function generates an error if dataTypeId represents a
floating-point data type, or if the stored integer value that you set is
invalid.

A-43

ssFxpSetU32BitRegion

To view a demo model whose S-functions use the
ssFxpSetU32BitRegion function, at the MATLAB prompt,
enter fxpdemo_sfun_user_U32BitRegion.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

See Also ssFxpGetU32BitRegion

A-44

ssGetDataTypeBias

Purpose Return bias of registered data type

Syntax extern double ssGetDataTypeBias(SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the bias.

Description Fixed-point numbers can be represented as

This function returns the bias of a registered data type:

• For both trivial scaling and power-of-two scaling, 0 is returned.

• If the registered data type is ScaledDouble, the bias returned is that
of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

FixPt_DataTypeBias

See Also ssGetDataTypeFixedExponent, ssGetDataTypeFracSlope,
ssGetDataTypeTotalSlope

A-45

ssGetDataTypeFixedExponent

Purpose Return exponent of slope of registered data type

Syntax extern int ssGetDataTypeFixedExponent (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the exponent.

Description Fixed-point numbers can be represented as

where the slope can be expressed as

This function returns the exponent of a registered fixed-point data type:

• For power-of-two scaling, the exponent is the negative of the fraction
length.

• If the data type has trivial scaling, including for data types single
and double, the exponent is 0.

• If the registered data type is ScaledDouble, the exponent returned is
that of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

A-46

ssGetDataTypeFixedExponent

TLC
Functions

FixPt_DataTypeFixedExponent

See Also ssGetDataTypeBias, ssGetDataTypeFracSlope,
ssGetDataTypeTotalSlope

A-47

ssGetDataTypeFracSlope

Purpose Return fractional slope of registered data type

Syntax extern double ssGetDataTypeFracSlope(SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the fractional slope.

Description Fixed-point numbers can be represented as

where the slope can be expressed as

This function returns the fractional slope of a registered fixed-point
data type. To get the total slope, use ssGetDataTypeTotalSlope:

• For power-of-two scaling, the fractional slope is 1.

• If the data type has trivial scaling, including data types single and
double, the fractional slope is 1.

• If the registered data type is ScaledDouble, the fractional slope
returned is that of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

A-48

ssGetDataTypeFracSlope

TLC
Functions

FixPt_DataTypeFracSlope

See Also ssGetDataTypeBias, ssGetDataTypeFixedExponent,
ssGetDataTypeTotalSlope

A-49

ssGetDataTypeFractionLength

Purpose Return fraction length of registered data type with power-of-two scaling

Syntax extern int ssGetDataTypeFractionLength (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the fraction length.

Description This function returns the fraction length, or the number of bits to the
right of the binary point, of the data type designated by dataTypeId.

This function errors out when ssGetDataTypeIsScalingPow2 returns
FALSE.

This function also errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

FixPt_DataTypeFractionLength

See Also ssGetDataTypeFxpWordLength

A-50

ssGetDataTypeFxpContainWordLen

Purpose Return word length of storage container of registered data type

Syntax extern int ssGetDataTypeFxpContainWordLen (SimStruct *S,
DTypeId dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the container word length.

Description This function returns the word length, in bits, of the storage
container of the fixed-point data type designated by dataTypeId.
This function does not return the size of the storage container or the
word length of the data type. To get the storage container size, use
ssGetDataTypeStorageContainerSize. To get the data type word
length, use ssGetDataTypeFxpWordLength.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

Examples An sfix24_En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

A-51

ssGetDataTypeFxpContainWordLen

TLC
Functions

FixPt_DataTypeFxpContainWordLen

See Also ssGetDataTypeFxpWordLength, ssGetDataTypeStorageContainCat,
ssGetDataTypeStorageContainerSize

A-52

ssGetDataTypeFxpIsSigned

Purpose Determine whether fixed-point registered data type is signed or
unsigned

Syntax extern int ssGetDataTypeFxpIsSigned (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered fixed-point data type for which you
want to know whether it is signed.

Description This function determines whether a registered fixed-point data type is
signed:

• If the fixed-point data type is signed, the function returns TRUE. If
the fixed-point data type is unsigned, the function returns FALSE.

• If the registered data type is ScaledDouble, the function returns TRUE
or FALSE according to the signedness of the nonoverridden data type.

• If the registered data type is single or double, this function errors
out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

FixPt_DataTypeFxpIsSigned

A-53

ssGetDataTypeFxpWordLength

Purpose Return word length of fixed-point registered data type

Syntax extern int ssGetDataTypeFxpWordLength (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered fixed-point data type for which you
want to know the word length.

Description This function returns the word length of the fixed-point data type
designated by dataTypeId. This function does not return the word
length of the container of the data type. To get the container word
length, use ssGetDataTypeFxpContainWordLen:

• If the registered data type is fixed point, this function returns the
total word length including any sign bits, integer bits, and fractional
bits.

• If the registered data type is ScaledDouble, this function returns the
word length of the nonoverridden data type.

• If registered data type is single or double, this function errors out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

Examples An sfix24_En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

A-54

ssGetDataTypeFxpWordLength

• ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

TLC
Functions

FixPt_DataTypeFxpWordLength

See Also ssGetDataTypeFxpContainWordLen, ssGetDataTypeFractionLength,
ssGetDataTypeStorageContainerSize

A-55

ssGetDataTypeIsFixedPoint

Purpose Determine whether registered data type is fixed-point data type

Syntax extern int ssGetDataTypeIsFixedPoint(SimStruch *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether it is fixed-point.

Description This function determines whether a registered data type is a fixed-point
data type:

• This function returns TRUE if the registered data type is fixed-point,
and FALSE otherwise.

• If the registered data type is a pure Simulink® integer, such as int8,
this function returns TRUE.

• If the registered data type is ScaledDouble, this function returns
FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

FixPt_DataTypeIsFixedPoint

See Also ssGetDataTypeIsFloatingPoint

A-56

ssGetDataTypeIsFloatingPoint

Purpose Determine whether registered data type is floating-point data type

Syntax extern int ssGetDataTypeIsFloatingPoint (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether it is floating-point.

Description This function determines whether a registered data type is single or
double:

• If the registered data type is either single or double, this function
returns TRUE, and FALSE is returned otherwise.

• If the registered data type is ScaledDouble, this function returns
FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

FixPt_DataTypeIsFloatingPoint

See Also ssGetDataTypeIsFixedPoint

A-57

ssGetDataTypeIsFxpFltApiCompat

Purpose Determine whether registered data type is supported by API for
user-written fixed-point S-functions

Syntax extern int ssGetDataTypeIsFxpFltApiCompat(SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
determine compatibility with the API for user-written fixed-point
S-functions.

Description This function determines whether the registered data type is supported
by the API for user-written fixed-point S-functions. The supported data
types are all standard Simulink data types, all fixed-point data types,
and data type override data types.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

None. Checking for API-compatible data types is done in simulation.
Checking for API-compatible data types is not supported in TLC.

A-58

ssGetDataTypeIsScalingPow2

Purpose Determine whether registered data type has power-of-two scaling

Syntax extern int ssGetDataTypeIsScalingPow2 (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether the scaling is strictly power-of-two.

Description This function determines whether the registered data type is scaled
strictly by a power of two. Fixed-point numbers can be represented as

where the slope can be expressed as

When bias = 0 and fractional slope = 1, the only scaling factor that
remains is a power of two:

Trivial scaling is considered a case of power-of-two scaling, with the
exponent being equal to zero.

Note Many fixed-point algorithms are designed to accept
only power-of-two scaling. For these algorithms, you can call
ssGetDataTypeIsScalingPow2 in mdlSetInputPortDataType and
mdlSetOutputPortDataType, to prevent unsupported data types from
being accepted.

A-59

ssGetDataTypeIsScalingPow2

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

FixPt_DataTypeIsScalingPow2

See Also ssGetDataTypeIsScalingTrivial

A-60

ssGetDataTypeIsScalingTrivial

Purpose Determine whether scaling of registered data type is slope = 1, bias = 0

Syntax extern int ssGetDataTypeIsScalingTrivial (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know whether the scaling is trivial.

Description This function determines whether the scaling of a registered data type
is trivial. In [Slope Bias] representation, fixed-point numbers can be
represented as

In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right of
the least significant bit for trivial scaling, meaning that the fraction
length is zero:

In either case, trivial scaling means that the real-world value is simply
equal to the stored integer value:

Scaling is always trivial for pure integers, such as int8, and also for the
true floating-point types single and double.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

A-61

ssGetDataTypeIsScalingTrivial

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

FixPt_DataTypeIsScalingTrivial

See Also ssGetDataTypeIsScalingPow2

A-62

ssGetDataTypeNumberOfChunks

Purpose Return number of chunks in multiword storage container of registered
data type

Syntax extern int ssGetDataTypeNumberOfChunks(SimStruct *S,
DTypeId dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the number of chunks in its multiword storage container.

Description This function returns the number of chunks in the multiword storage
container of the fixed-point data type designated by dataTypeId.
This function is valid only for a registered data type whose storage
container uses a multiword representation. You can use the
ssGetDataTypeStorageContainCat function to identify the storage
container category; for multiword storage containers, the function
returns the category FXP_STORAGE_MULTIWORD.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

See Also ssGetDataTypeStorageContainCat

A-63

ssGetDataTypeStorageContainCat

Purpose Return storage container category of registered data type

Syntax extern fxpStorageContainerCategory
ssGetDataTypeStorageContainCat(SimStruct *S, DTypeId dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the container category.

Description This function returns the storage container category of the data type
designated by dataTypeId. The container category returned by this
function is used to store input and output signals, run-time parameters,
and DWorks during Simulink simulations.

During simulation, fixed-point signals are held in one of seven types
of containers, as shown in the table below. Therefore in many cases,
signals are represented in containers with more bits than their actual
word length.

Fixed-Point Storage Containers

Container Category
Signal Word
Length Container Size

Container
typedef

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 1 byte int8_T or
uint8_T

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16 (unsigned)

9 to 16 bits 2 bytes int16_T or
uint16_T

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32 (unsigned)

17 to 32 bits 4 bytes int32_T or
uint32_T

FXP_STORAGE_CHUNKARRAY 33 to
FXP_MAX_BITS

FXP_MAX_BITS fxpChunkArray

A-64

ssGetDataTypeStorageContainCat

As shown by the last case in the table, any signal with a word size
greater than 32 bits is held in a “chunk array,” which is composed of an
integer number of “chunks.”

When the number of bits in the signal word length is less than the size
of the container, the word length bits are always stored in the least
significant bits of the container. The remaining container bits must be
set to specific values:

• If the signal is stored in a chunk array, the remaining bits must be
cleared to zero.

• If the signal is not stored in a chunk array, then the word length bits
must be sign extended to fit the bits of the container:

- If the data type is unsigned, then the sign-extended bits must be
cleared to zero.

- If the data type is signed, then the sign-extended bits must be set
to one for strictly negative numbers, and cleared to zero otherwise.

The ssGetDataTypeStorageContainCat function can also return the
following values.

Other Storage Containers

Container Category Description

FXP_STORAGE_UNKOWN Returned if the storage container category is unknown

FXP_STORAGE_SINGLE Container type for a Simulink single

FXP_STORAGE_DOUBLE Container type for a Simulink double

FXP_STORAGE_SCALEDDOUBLE Container type for a data type that has been overridden
with Scaled doubles

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

A-65

ssGetDataTypeStorageContainCat

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

Because the mapping of storage containers in simulation to storage
containers in code generation is not one-to-one, the TLC functions
for storage containers in TLC are different from those in simulation.
Refer to “Storage Container TLC Functions” on page A-13 for more
information:

• FixPt_DataTypeNativeType

• FixPt_DataTypeStorageDouble

• FixPt_DataTypeStorageSingle

• FixPt_DataTypeStorageScaledDouble

• FixPt_DataTypeStorageSInt

• FixPt_DataTypeStorageUInt

• FixPt_DataTypeStorageSLong

• FixPt_DataTypeStorageULong

• FixPt_DataTypeStorageSShort

• FixPt_DataTypeStorageUShort

See Also ssGetDataTypeStorageContainerSize

A-66

ssGetDataTypeStorageContainerSize

Purpose Return storage container size of registered data type

Syntax extern size_t ssGetDataTypeStorageContainerSize
(SimStruct *S, DTypeId

dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the container size.

Description This function returns the storage container size of the data type
designated by dataTypeId. This function returns the same value as
would the sizeof() function; it does not return the word length of
either the storage container or the data type. To get the word length of
the storage container, use ssGetDataTypeFxpContainWordLen. To get
the word length of the data type, use ssGetDataTypeFxpWordLength.

The container of the size returned by this function stores input and
output signals, run-time parameters, and DWorks during Simulink
simulations. It is also the appropriate size measurement to pass to
functions like memcpy().

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

Examples An sfix24_En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

A-67

ssGetDataTypeStorageContainerSize

• ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

TLC
Functions

FixPt_GetDataTypeStorageContainerSize

See Also ssGetDataTypeFxpContainWordLen, ssGetDataTypeFxpWordLength,
ssGetDataTypeStorageContainCat

A-68

ssGetDataTypeTotalSlope

Purpose Return total slope of scaling of registered data type

Syntax extern double ssGetDataTypeTotalSlope (SimStruct *S, DTypeId
dataTypeId)

Arguments S
SimStruct representing an S-function block.

dataTypeId
Data type ID of the registered data type for which you want to
know the total slope.

Description Fixed-point numbers can be represented as

where the slope can be expressed as

This function returns the total slope, rather than the fractional slope, of
the data type designated by dataTypeId. To get the fractional slope, use
ssGetDataTypeFracSlope:

• If the registered data type has trivial scaling, including double and
single data types, the function returns a total slope of 1.

• If the registered data type is ScaledDouble, the function returns the
total slope of the nonoverridden data type. Refer to the examples
below.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

A-69

ssGetDataTypeTotalSlope

Languages C

Examples The data type sfix32_En4 becomes flts32_En4 with data type override.
The total slope returned by this function in either case is 0.0625 (2-4).

The data type ufix16_s7p98 becomes fltu16_s7p98 with data type
override. The total slope returned by this function in either case is 7.98.

TLC
Functions

FixPt_DataTypeTotalSlope

See Also ssGetDataTypeBias, ssGetDataTypeFixedExponent,
ssGetDataTypeFracSlope

A-70

ssRegisterDataTypeFxpBinaryPoint

Purpose Register fixed-point data type with binary-point-only scaling and return
its data type ID

Syntax extern DTypeId ssRegisterDataTypeFxpBinaryPoint
(SimStruct *S,
int isSigned,
int wordLength,
int fractionLength,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionLength
Number of bits in the data type to the right of the binary point.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify

A-71

ssRegisterDataTypeFxpBinaryPoint

the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with
binary-point-only scaling. Alternatively, you can use one of the other
fixed-point registration functions:

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink® Fixed Point™ software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-15.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

A-72

ssRegisterDataTypeFxpBinaryPoint

TLC
Functions

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

See Also ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble,
ssRegisterDataTypeFxpSlopeBias

A-73

ssRegisterDataTypeFxpFSlopeFixExpBias

Purpose Register fixed-point data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias, and return its data
type ID

Syntax extern DTypeId ssRegisterDataTypeFxpFSlopeFixExpBias
(SimStruct *S,
int isSigned,
int wordLength,
double fractionalSlope,
int fixedExponent,
double bias,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

A-74

ssRegisterDataTypeFxpFSlopeFixExpBias

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type by
specifying the word length, fractional slope, fixed exponent, and bias.
Alternatively, you can use one of the other fixed-point registration
functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

A-75

ssRegisterDataTypeFxpFSlopeFixExpBias

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-15.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

See Also ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpScaledDouble,
ssRegisterDataTypeFxpSlopeBias

A-76

ssRegisterDataTypeFxpScaledDouble

Purpose Register scaled double data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias, and return its data
type ID

Syntax extern DTypeId ssRegisterDataTypeFxpScaledDouble
(SimStruct *S,
int isSigned,
int wordLength,
double fractionalSlope,
int fixedExponent,
double bias,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True

A-77

ssRegisterDataTypeFxpScaledDouble

Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a scaled double data type.
Alternatively, you can use one of the other fixed-point registration
functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

A-78

ssRegisterDataTypeFxpScaledDouble

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-15.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

Languages C

TLC
Functions

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

See Also ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpSlopeBias

A-79

ssRegisterDataTypeFxpSlopeBias

Purpose Register data type with [Slope Bias] scaling and return its data type ID

Syntax extern DTypeId ssRegisterDataTypeFxpSlopeBias
(SimStruct *S,
int isSigned,
int wordLength,
double totalSlope,
double bias,
int obeyDataTypeOverride)

Arguments S
SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

totalSlope
Total slope of the scaling of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard

A-80

ssRegisterDataTypeFxpSlopeBias

Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with
[Slope Bias] scaling. Alternately, you can use one of the other fixed-point
registration functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer
to “Data Type IDs” on page A-15.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-6.

A-81

ssRegisterDataTypeFxpSlopeBias

Languages C

TLC
Functions

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

See Also ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble

A-82

B

Selected Bibliography

[1] Burrus, C.S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer,
and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using
MATLAB, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[2] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of
Dynamic Systems, Second Edition, Addison-Wesley Publishing Company,
Reading, Massachusetts, 1990.

[3] Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F.
Kaiser, John Wiley & Sons, Inc., New York, 1993.

[4] Hanselmann, H., “Implementation of Digital Controllers — A Survey,”
Automatica, Vol. 23, No. 1, pp. 7-32, 1987.

[5] Jackson, L.B., Digital Filters and Signal Processing, Second Edition,
Kluwer Academic Publishers, Seventh Printing, Norwell, Massachusetts,
1993.

[6] Middleton, R. and G. Goodwin, Digital Control and Estimation — A
Unified Approach, Prentice Hall, Englewood Cliffs, New Jersey. 1990.

[7] Moler, C., “Floating points: IEEE Standard unifies arithmetic model,”
Cleve’s Corner, The MathWorks, Inc., 1996. You can find this article at
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/index.html.

[8] Ogata, K., Discrete-Time Control Systems, Second Edition, Prentice Hall,
Englewood Cliffs, New Jersey, 1995.

[9] Roberts, R.A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1987.

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/index.html

B Selected Bibliography

B-2

Glossary

Glossary

This glossary defines terms related to fixed-point data types and numbers.
These terms may appear in some or all of the documents that describe
products from The MathWorks™ that have fixed-point support.

arithmetic shift
Shift of the bits of a binary word for which the sign bit is recycled for
each bit shift to the right. A zero is incorporated into the least significant
bit of the word for each bit shift to the left. In the absence of overflows,
each arithmetic shift to the right is equivalent to a division by 2, and
each arithmetic shift to the left is equivalent to a multiplication by 2.

See also binary point, binary word, bit, logical shift, most significant bit

bias
Part of the numerical representation used to interpret a fixed-point
number. Along with the slope, the bias forms the scaling of the number.
Fixed-point numbers can be represented as

where the slope can be expressed as

See also fixed-point representation, fractional slope, integer, scaling,
slope, [Slope Bias]

binary number
Value represented in a system of numbers that has two as its base and
that uses 1’s and 0’s (bits) for its notation.

See also bit

Glossary-1

Glossary

binary point
Symbol in the shape of a period that separates the integer and fractional
parts of a binary number. Bits to the left of the binary point are
integer bits and/or sign bits, and bits to the right of the binary point
are fractional bits.

See also binary number, bit, fraction, integer, radix point

binary-point-only scaling
Scaling of a binary number that results from shifting the binary point of
the number right or left, and which therefore can only occur by powers
of two.

See also binary number, binary point, scaling

binary word
Fixed-length sequence of bits (1’s and 0’s). In digital hardware, numbers
are stored in binary words. The way in which hardware components or
software functions interpret this sequence of 1’s and 0’s is described
by a data type.

See also bit, data type, word

bit
Smallest unit of information in computer software or hardware. A bit
can have the value 0 or 1.

ceiling (round toward)
Rounding mode that rounds to the closest representable number in the
direction of positive infinity. This is equivalent to the ceil mode in the
Fixed-Point Toolbox™ software.

See also convergent rounding, floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

Glossary-2

Glossary

contiguous binary point
Binary point that occurs within the word length of a data type. For
example, if a data type has four bits, its contiguous binary point must be
understood to occur at one of the following five positions.

See also data type, noncontiguous binary point, word length

convergent rounding
Rounding mode that rounds to the nearest allowable quantized value.
Numbers that are exactly halfway between the two nearest allowable
quantized values are rounded up only if the least significant bit (after
rounding) would be set to 0.

See also ceiling (round toward), floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

data type
Set of characteristics that define a group of values. A fixed-point data
type is defined by its word length, its fraction length, and whether it
is signed or unsigned. A floating-point data type is defined by its word
length and whether it is signed or unsigned.

See also fixed-point representation, floating-point representation,
fraction length, word length

data type override
Parameter in the Fixed-Point Tool that allows you to set the output data
type and scaling of fixed-point blocks on a system or subsystem level.

See also data type, scaling

Glossary-3

Glossary

exponent
Part of the numerical representation used to express a floating-point or
fixed-point number.

1 Floating-point numbers are typically represented as

2 Fixed-point numbers can be represented as

where the slope can be expressed as

The exponent of a fixed-point number is equal to the negative of the
fraction length.

See also bias, fixed-point representation, floating-point representation,
fraction length, fractional slope, integer, mantissa, slope

fixed-point representation
Method for representing numerical values and data types that have
a set range and precision.

1 Fixed-point numbers can be represented as

where the slope can be expressed as

The slope and the bias together represent the scaling of the
fixed-point number.

Glossary-4

Glossary

2 Fixed-point data types can be defined by their word length, their
fraction length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope,
integer, precision, range, scaling, slope, word length

floating-point representation
Method for representing numerical values and data types that can have
changing range and precision.

1 Floating-point numbers can be represented as

2 Floating-point data types are defined by their word length.

See also data type, exponent, mantissa, precision, range, word length

floor (round toward)
Rounding mode that rounds to the closest representable number in
the direction of negative infinity.

See also ceiling (round toward), convergent rounding, nearest (round
toward), rounding, truncation, zero (round toward)

fraction
Part of a fixed-point number represented by the bits to the right of the
binary point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

fraction length
Number of bits to the right of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction

Glossary-5

Glossary

fractional slope
Part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

where the slope can be expressed as

The term slope adjustment is sometimes used as a synonym for
fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

guard bits
Extra bits in either a hardware register or software simulation that are
added to the high end of a binary word to ensure that no information
is lost in case of overflow.

See also binary word, bit, overflow

integer

1 Part of a fixed-point number represented by the bits to the left of
the binary point. The integer represents numbers that are greater
than or equal to one.

2 Also called the “stored integer.” The raw binary number, in which the
binary point is assumed to be at the far right of the word. The integer
is part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

or

where the slope can be expressed as

Glossary-6

Glossary

See also bias, fixed-point representation, fractional slope, integer,
real-world value, slope

integer length
Number of bits to the left of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction length,
integer

least significant bit (LSB)
Bit in a binary word that can represent the smallest value. The LSB is
the rightmost bit in a big-endian-ordered binary word. The weight of
the LSB is related to the fraction length according to

See also big-endian, binary word, bit, most significant bit

logical shift
Shift of the bits of a binary word, for which a zero is incorporated into
the most significant bit for each bit shift to the right and into the least
significant bit for each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant
bit

mantissa
Part of the numerical representation used to express a floating-point
number. Floating-point numbers are typically represented as

See also exponent, floating-point representation

Glossary-7

Glossary

most significant bit (MSB)
Bit in a binary word that can represent the largest value. The MSB is
the leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit

nearest (round toward)
Rounding mode that rounds to the closest representable number, with
the exact midpoint rounded to the closest representable number in the
direction of positive infinity. This is equivalent to the nearest mode in
the Fixed-Point Toolbox™ software.

See also ceiling (round toward), convergent rounding, floor (round
toward), rounding, truncation, zero (round toward)

noncontiguous binary point
Binary point that is understood to fall outside the word length of a
data type. For example, the binary point for the following 4-bit word is
understood to occur two bits to the right of the word length,

thereby giving the bits of the word the following potential values.

See also binary point, data type, word length

one’s complement representation
Representation of signed fixed-point numbers. Negating a binary
number in one’s complement requires a bitwise complement. That is, all
0’s are flipped to 1’s and all 1’s are flipped to 0’s. In one’s complement
notation there are two ways to represent zero. A binary word of all
0’s represents “positive” zero, while a binary word of all 1’s represents
“negative” zero.

See also binary number, binary word, sign/magnitude representation,
signed fixed-point, two’s complement representation

Glossary-8

Glossary

overflow
Situation that occurs when the magnitude of a calculation result is too
large for the range of the data type being used. In many cases you can
choose to either saturate or wrap overflows.

See also saturation, wrapping

padding
Extending the least significant bit of a binary word with one or more
zeros.

See also least significant bit

precision

1 Measure of the smallest numerical interval that a fixed-point data
type and scaling can represent, determined by the value of the
number’s least significant bit. The precision is given by the slope, or
the number of fractional bits. The term resolution is sometimes used
as a synonym for this definition.

2 Measure of the difference between a real-world numerical value and
the value of its quantized representation. This is sometimes called
quantization error or quantization noise.

See also data type, fraction, least significant bit, quantization,
quantization error, range, slope

Q format
Representation used by Texas Instruments™ to encode signed two’s
complement fixed-point data types. This fixed-point notation takes the
form

Qm n.

where

• Q indicates that the number is in Q format.

• m is the number of bits used to designate the two’s complement
integer part of the number.

Glossary-9

Glossary

• n is the number of bits used to designate the two’s complement
fractional part of the number, or the number of bits to the right of
the binary point.

In Q format notation, the most significant bit is assumed to be the sign
bit.

See also binary point, bit, data type, fixed-point representation, fraction,
integer, two’s complement

quantization
Representation of a value by a data type that has too few bits to
represent it exactly.

See also bit, data type, quantization error

quantization error
Error introduced when a value is represented by a data type that has
too few bits to represent it exactly, or when a value is converted from
one data type to a shorter data type. Quantization error is also called
quantization noise.

See also bit, data type, quantization

radix point
Symbol in the shape of a period that separates the integer and fractional
parts of a number in any base system. Bits to the left of the radix point
are integer and/or sign bits, and bits to the right of the radix point are
fraction bits.

See also binary point, bit, fraction, integer, sign bit

range
Span of numbers that a certain data type can represent.

See also data type, precision

Glossary-10

Glossary

real-world value
Stored integer value with fixed-point scaling applied. Fixed-point
numbers can be represented as

or

where the slope can be expressed as

See also integer

resolution
See precision

rounding
Limiting the number of bits required to express a number. One or
more least significant bits are dropped, resulting in a loss of precision.
Rounding is necessary when a value cannot be expressed exactly by the
number of bits designated to represent it.

See also bit, ceiling (round toward), convergent rounding, floor (round
toward), least significant bit, nearest (round toward), precision,
truncation, zero (round toward)

saturation
Method of handling numeric overflow that represents positive overflows
as the largest positive number in the range of the data type being used,
and negative overflows as the largest negative number in the range.

See also overflow, wrapping

Glossary-11

Glossary

scaled double
A double data type that retains fixed-point scaling information. For
example, in the Simulink® and Fixed-Point Toolbox™ software you can
use data type override to convert your fixed-point data types to scaled
doubles. You can then simulate to determine the ideal floating-point
behavior of your system. After you gather that information you can
turn data type override off to return to fixed-point data types, and your
quantities still have their original scaling information because it was
held in the scaled double data types.

scaling

1 Format used for a fixed-point number of a given word length and
signedness. The slope and bias together form the scaling of a
fixed-point number.

2 Changing the slope and/or bias of a fixed-point number without
changing the stored integer.

See also bias, fixed-point representation, integer, slope

shift
Movement of the bits of a binary word either toward the most significant
bit (“to the left”) or toward the least significant bit (“to the right”). Shifts
to the right can be either logical, where the spaces emptied at the front
of the word with each shift are filled in with zeros, or arithmetic, where
the word is sign extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

sign bit
Bit (or bits) in a signed binary number that indicates whether the
number is positive or negative.

See also binary number, bit

sign extension
Addition of bits that have the value of the most significant bit to the
high end of a two’s complement number. Sign extension does not change
the value of the binary number.

Glossary-12

Glossary

See also binary number, guard bits, most significant bit, two’s
complement representation, word

sign/magnitude representation
Representation of signed fixed-point or floating-point numbers. In
sign/magnitude representation, one bit of a binary word is always
the dedicated sign bit, while the remaining bits of the word encode
the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1
(negative), or from 1 to 0.

See also binary word, bit, fixed-point representation, floating-point
representation, one’s complement representation, sign bit, signed
fixed-point, two’s complement representation

signed fixed-point
Fixed-point number or data type that can represent both positive and
negative numbers.

See also data type, fixed-point representation, unsigned fixed-point

slope
Part of the numerical representation used to express a fixed-point
number. Along with the bias, the slope forms the scaling of a fixed-point
number. Fixed-point numbers can be represented as

g

where the slope can be expressed as

g

See also bias, fixed-point representation, fractional slope, integer,
scaling, [Slope Bias]

slope adjustment
See fractional slope

Glossary-13

Glossary

[Slope Bias]
Representation used to define the scaling of a fixed-point number.

See also bias, scaling, slope

stored integer
See integer

trivial scaling
Scaling that results in the real-world value of a number being simply
equal to its stored integer value.

In [Slope Bias] representation, fixed-point numbers can be represented
as

Index

O
offline conversions

addition and subtraction 3-41
multiplication with zero bias and matching

fractional slopes 3-49
multiplication with zero bias and mismatched

fractional slopes 3-48
parameter conversions 3-36
signals 3-37

online conversions
addition and subtraction 3-41
multiplication with zero bias and mismatched

fractional slopes 3-49
multiplication with zero biases and matching

fractional slopes 3-50
signals 3-37

optimization
code 8-10
using Model Advisor 8-15

overflows
code generation 8-4
definition 3-3

overrides with doubles
global override 6-20

P
padding with trailing zeros

definition 3-14
feedback controller demo 6-16

parallel form realization 4-14
parameter conversions 3-35

See also conversions 3-35
precision

fixed-point numbers 2-10
fixed-point parameters 3-36
IEEE floating-point numbers 2-23

Q
quantization 3-3

effects of fixed-point arithmetic 1-39
feedback controller demo 6-20
real-world value 2-7
rounding 3-4

R
radix point 2-4
range

fixed-point numbers 2-10
IEEE floating-point numbers 2-22

rapid simulation (rsim) target 8-9
reading fixed-point data from workspace 1-32
Real-Time Workshop

external mode 8-8
rapid simulation (rsim) target 8-9

real-world values 2-6
realizations

design constraints 4-7
direct form 4-8
parallel form 4-14
series cascade form 4-11

registering fixed-point data types A-16
rounding modes 3-4

code generation 8-4
simplest 3-11
toward ceiling 3-9
toward floor 3-10
toward nearest 3-7
toward zero 3-5

rsim target 8-9
run-time API

fixed-point data 1-35

S
S-functions

Index-4

Index

examples
fixed-point A-26

fixed-point A-1
fixed-point examples A-26
structure for fixed-point A-6
writing fixed-point A-1

saturation 3-18
scaling

accumulation 3-27
addition 3-24
binary-point-only 2-6
code generation 8-5
constant scaling for best precision 2-12
division 3-31
gain 3-29
multiplication 3-27
slope/bias 2-7
trivial A-4

scientific notation 2-17
series cascade form realizations 4-11
sharing fixed-point models 1-4
shifts 3-54
showfixptsimerrors function 11-5
showfixptsimranges function 11-6
sign

extension 3-21
sign bit for IEEE numbers 2-19
signal conversions 3-36
signal logging

fixed-point 1-35
simplest

rounding 3-11
Simulink acceleration modes 8-6
Simulink Fixed Point features 1-21
single-precision format 2-20
slope/bias scaling 2-7
ssFxpConvert A-36
ssFxpConvertFromRealWorldValue A-38
ssFxpConvertToRealWorldValue A-40

ssFxpGetU32BitRegion A-41
ssFxpSetU32BitRegion A-43
ssGetDataTypeBias A-45
ssGetDataTypeFixedExponent A-46
ssGetDataTypeFracSlope A-48
ssGetDataTypeFractionLength A-50
ssGetDataTypeFxpContainWordLen A-51
ssGetDataTypeFxpIsSigned A-53
ssGetDataTypeFxpWordLength A-54
ssGetDataTypeIsFixedPoint A-56
ssGetDataTypeIsFloatingPoint A-57
ssGetDataTypeIsFxpFltApiCompat A-58
ssGetDataTypeIsScalingPow2 A-59
ssGetDataTypeIsScalingTrivial A-61
ssGetDataTypeNumberOfChunks A-63
ssGetDataTypeStorageContainCat A-64
ssGetDataTypeStorageContainerSize A-67
ssGetDataTypeTotalSlope A-69
ssRegisterDataTypeFxpBinaryPoint A-71
ssRegisterDataTypeFxpFSlopeFix-

ExpBias A-74
ssRegisterDataTypeFxpScaledDouble A-77
ssRegisterDataTypeFxpSlopeBias A-80
storage containers

fixed-point API A-8
stored integers 1-29
subtraction

See addition 3-26

T
targeting an embedded processor

design rules 4-5
operation assumptions 4-4
size assumptions 4-4

trivial scaling A-4
truncation 3-6
two’s complement 2-4

Index-5

Index

U
underflow 2-22

W
wrapping 3-18

writing fixed-point data to workspace 1-32

Z
zero

rounding 3-5

Index-6

	toc
	Getting Started
	Product Overview
	What You Need to Get Started
	Installation
	Sharing Fixed-Point Models
	Demos
	Basic Simulink ® Fixed Point Demos
	Advanced Simulink ® Fixed Point Demos

	Physical Quantities and Measurement Scales
	Introduction
	Selecting a Measurement Scale
	Measurement Scales: Beyond Multiplication

	Example: Selecting a Measurement Scale

	Why Use Fixed-Point Hardware?
	Why Use the Simulink ® Fixed Point Software?
	The Development Cycle
	Simulink ® Fixed Point Software Features
	Configuring Blocks with Fixed-Point Output
	Specifying the Output Data Type and Scaling
	Specifying Fixed-Point Data Types with the Data Type Assistant
	Rounding
	Overflow Handling
	Locking the Output Scaling
	Real-World Values Versus Stored Integer Values

	Configuring Blocks with Fixed-Point Parameters
	Specifying Fixed-Point Values Directly
	Specifying Fixed-Point Values Via Parameter Objects

	Passing Fixed-Point Data Between Simulink Models and the MATLAB
	Reading Fixed-Point Data from the Workspace
	Writing Fixed-Point Data to the Workspace
	Logging Fixed-Point Signals
	Accessing Fixed-Point Block Data During Simulation

	Additional Features and Capabilities
	Automatic Scaling
	Code Generation

	Example: Converting from Doubles to Fixed Point
	About This Example
	Block Descriptions
	Simulation Results
	Trial 1: Binary-Point-Only Scaling
	Trial 2: [Slope Bias] Scaling

	Data Types and Scaling
	Overview
	Fixed-Point Numbers
	About Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Binary Point Interpretation
	Integers
	Fractionals
	Generalized Fixed-Point Numbers

	Scaling
	Binary-Point-Only Scaling
	[Slope Bias] Scaling

	Quantization
	Example: Fixed-Point Format

	Range and Precision
	Range
	Precision
	Fixed-Point Data Type Parameters
	Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only Scal
	Range of an 8-Bit Fixed-Point Data Type — [Slope Bias] Scaling

	Constant Scaling for Best Precision
	Fixed-Point Data Type and Scaling Notation
	Example: Port Data Type Display

	Floating-Point Numbers
	About Floating-Point Numbers
	Scientific Notation
	The IEEE Format
	The Sign Bit
	The Fraction Field
	The Exponent Field
	Single-Precision Format
	Double-Precision Format
	Nonstandard IEEE Format

	Range and Precision
	Range
	Precision
	Floating-Point Data Type Parameters

	Exceptional Arithmetic
	Denormalized Numbers
	Inf
	NaN

	Arithmetic Operations
	Overview
	Limitations on Precision
	Introduction
	Rounding
	Round Toward Zero
	Round Toward Nearest
	Round Toward Ceiling
	Round Toward Floor
	Simplest Rounding

	Padding with Trailing Zeros
	Example: Limitations on Precision and Errors
	Example: Maximizing Precision

	Limitations on Range
	Introduction
	Saturation and Wrapping
	Example: Saturation and Wrapping

	Guard Bits
	Example: Limitations on Range

	Recommendations for Arithmetic and Scaling
	Introduction
	Addition
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Accumulation
	Binary-Point-Only Scaling

	Multiplication
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Gain
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision

	Division
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Summary

	Parameter and Signal Conversions
	Introduction
	Parameter Conversions
	Offline Conversions

	Signal Conversions
	Offline Conversions
	Online Conversions and Operations
	Streamlining Simulations and Generated Code

	Rules for Arithmetic Operations
	Introduction
	Computational Units
	Addition and Subtraction
	Fixed-Point Simulink Blocks Summation Process
	Streamlining Simulations and Generated Code
	Example: The Summation Process

	Multiplication
	Fixed-Point Simulink Blocks Multiplication Process
	Example: The Multiplication Process

	Division
	Fixed-Point Simulink Blocks Division Process
	Example: The Division Process

	Shifts
	Shifting Bits to the Right

	Example: Conversions and Arithmetic Operations

	Realization Structures
	Overview
	Introduction
	Realizations and Data Types

	Targeting an Embedded Processor
	Introduction
	Size Assumptions
	Operation Assumptions
	Design Rules
	Design Rule 1: Only Multiply Base Data Types
	Design Rule 2: Delays Should Use the Base Data Type
	Design Rule 3: Temporary Variables Can Use the Accumulator Data
	Design Rule 4: Summation Can Use the Accumulator Data Type

	Canonical Forms
	Introduction
	Direct Form II
	Series Cascade Form
	Parallel Form

	Fixed-Point Advisor
	Working With the Fixed-Point Advisor
	Introduction to the Fixed-Point Advisor
	Running the Fixed-Point Advisor
	Fixing a Task Failure
	Automatically Fixing Failures
	Batch Fixing Failures

	Tutorial: Converting a Model from Floating- to Fixed-Point
	About This Tutorial
	Starting the Fixed-Point Advisor
	Prepare Model for Conversion
	Prepare for Data Typing and Scaling
	Perform Data Typing and Scaling
	Prepare for Code Generation

	Fixed-Point Tool
	Overview of the Fixed-Point Tool
	Introduction to the Fixed-Point Tool
	Opening the Fixed-Point Tool
	Understanding the Interface

	Working with the Fixed-Point Tool
	Fixed-Point Tool Workflow
	Proposing Scaling
	Reviewing Scaling Proposals
	Proposed Data Type Summary
	Needs Attention
	Shared Data Type Summary
	Data Type Details

	Applying Scaling

	Introduction to the Tutorial
	Opening the Demo Model
	About the Demo Model
	Simulation Setup
	Idealized Feedback Design
	Digital Controller Realization
	Direct Form Realization

	Tutorial: Feedback Controller
	Before You Begin
	Initial Guess at Scaling
	Data Type Override
	Automatic Scaling

	Tutorial: Producing Lookup Table Data
	Overview
	Worst-Case Error for a Lookup Table
	What Is Worst-Case Error for a Lookup Table?
	Example: Square Root Function

	Creating Lookup Tables for a Sine Function
	Introduction
	Parameters for fixpt_look1_func_approx
	Using Only errmax
	Using Only nptsmax
	Spacing

	Setting Function Parameters for the Lookup Table
	Example: Using errmax with Unrestricted Spacing
	Creating the Lookup Table
	Plotting the Results

	Example: Using nptsmax with Unrestricted Spacing
	Setting the Number of Breakpoints
	Creating the Lookup Table
	Plotting the Results
	Restricting the Spacing

	Example: Using errmax with Even Spacing
	Example: Using nptsmax with Even Spacing
	Example: Using errmax with Power of Two Spacing
	Example: Using nptsmax with Power of Two Spacing
	Specifying Both errmax and nptsmax
	Comparing the Examples

	Summary: Using the Lookup Table Functions
	Effect of Spacing on Speed, Error, and Memory Usage
	Introduction
	Data ROM Required
	Uneven Case
	Even Case
	Power of Two Case

	Determining Out-of-Range Inputs
	Determining Input Location
	Uneven Case
	Even Case
	Power of Two Case
	Comparison

	Interpolation
	Uneven Case
	Even Case
	Power of Two Case

	Conclusion

	Code Generation
	Overview
	Code Generation Support
	Introduction
	Languages
	Storage Class of Variables
	Storage Class of Parameters
	Rounding Modes
	Overflow Handling
	Blocks
	Scaling

	Accelerating Fixed-Point Models
	Using External Mode or Rapid Simulation Target
	Introduction
	External Mode
	Rapid Simulation Target

	Optimizing Your Generated Code
	Introduction
	Restrict Data Type Word Lengths
	Avoid Fixed-Point Scalings with Bias
	Wrap and Round to Floor or Simplest
	Limit the Use of Custom Storage Classes
	Limit the Use of Unevenly Spaced Lookup Tables
	Minimize the Variety of Similar Fixed-Point Utility Functions

	Optimizing Your Generated Code with the Model Advisor
	Introduction
	Optimize Lookup Table Data
	Reduce Cumbersome Multiplications
	Optimize the Number of Multiply and Divide Operations
	Reduce Multiplies and Divides with Nonzero Bias
	Eliminate Mismatched Scaling
	Minimize Internal Conversion Issues
	Use the Most Efficient Rounding

	Fixed-Point Advisor Reference
	Fixed-Point Advisor
	Fixed-Point Advisor Overview
	Description
	Procedures
	Tips
	See Also

	Prepare Model for Conversion
	Prepare Model for Conversion Overview
	Description
	See Also

	Verify model simulation settings
	Description
	Analysis Results and Recommended Actions
	Action Results
	See Also

	Address unsupported blocks
	Description
	Analysis Results and Recommended Actions

	Verify update diagram status
	Description
	Analysis Results and Recommended Actions
	See Also

	Set up signal logging
	Description
	Analysis Result and Recommended Actions
	Action Result
	Tips

	Create simulation reference data
	Description
	Analysis Results and Recommended Actions
	Tips

	Verify hardware selection
	Description
	Analysis Results and Recommended Actions
	See Also

	Verify Fixed-Point Conversion Guidelines Overview
	Description
	See Also

	Check model configuration data validity diagnostic parameters se
	Description
	Analysis Results and Recommended Actions
	Action Results

	Implement logic signals as Boolean data
	Description
	Analysis Results and Recommended Actions
	Action Results

	Check for proper bus usage
	Description
	Analysis Results and Recommended Actions

	Prepare for Data Typing and Scaling
	Prepare for Data Typing and Scaling Overview
	Description
	Tips
	See Also

	Remove output data type inheritance
	Description
	Analysis Results and Recommended Actions
	Action Results

	Relax input data type settings
	Description
	Analysis Results and Recommended Actions
	Action Results

	Verify Stateflow charts have strong data typing with Simulink
	Description
	Analysis Results and Recommended Actions
	Action Results

	Specify block minimum and maximum values
	Description
	Analysis Results and Recommended Actions
	Tips
	See Also

	Perform Data Typing and Scaling
	Perform Data Typing and Scaling Overview
	Description
	See Also

	Propose scaling for Inport blocks
	Description
	Input Parameters
	Reported Conditions and Recommended Actions
	Action Results
	Tips
	See Also

	Propose scaling for Constant blocks
	Description
	Input Parameters
	Analysis Results and Recommended Actions
	Action Results
	Tips
	See Also

	Propose scaling for blocks
	Description
	Input Parameters
	Analysis Results and Recommended Actions
	Action Results
	Tips
	See Also

	Resolve scaling conflicts
	Description
	Analysis Results and Recommended Actions
	Action Results
	Limitations
	See Also

	Summarize data types
	Description
	Analysis Result and Recommended Actions
	Tips

	Propose scaling for parameters
	Description
	Input Parameters
	Analysis Results and Recommended Actions
	Action Results
	Tips
	See Also

	Check for numeric errors
	Description
	Analysis Results and Recommended Actions

	Analyze logged signals
	Description
	Input Parameters
	Analysis Results and Recommended Actions

	Prepare for Code Generation
	Prepare for Code Generation Overview
	Limitations
	See Also

	Disable signal logging
	Description
	Analysis Results and Recommended Actions
	Action Results
	Limitations

	Identify blocks that generate expensive saturation and rounding
	Description
	Analysis Results and Recommended Actions
	Limitations

	Identify questionable fixed-point operations
	Description
	Analysis Results and Recommended Actions
	Limitations
	See Also

	Function Reference
	Global Changes
	Tools

	Functions — Alphabetical List
	Writing Fixed-Point S-Functions
	Data Type Support
	Supported Data Types
	The Treatment of Integers
	Data Type Override

	Structure of the S-Function
	Storage Containers
	Introduction
	Storage Containers in Simulation
	Chunk Arrays
	Storage Container Categories
	Storage Containers in Simulation Example

	Storage Containers in Code Generation
	Emulation
	Chunk Arrays
	Storage Container TLC Functions

	Data Type IDs
	The Assignment of Data Type IDs
	Registering Data Types
	Preassigned Data Type IDs

	Setting and Getting Data Types
	Getting Information About Data Types
	Converting Data Types

	Overflow Handling and Rounding Methods
	Tokens for Overflow Handling and Rounding Methods
	Overflow Logging Structure

	Creating MEX-Files
	Introduction
	MEX-Files on UNIX
	MEX-Files on Windows

	Fixed-Point S-Function Examples
	List of Fixed-Point S-Function Examples
	Getting the Input Port Data Type
	Setting the Output Port Data Type
	Interpreting an Input Value
	Writing an Output Value
	Using the Input Data Type to Determine the Output Data Type

	API Functions — Alphabetical List

	Selected Bibliography
	Glossary
	Index

	tables
	Fixed-Point Data Type Range and Default Scaling
	Tips for Reducing ROM Consumption or Model Execution Time
	How Scaling is Determined
	How Scaling is Determined
	How Scaling is Determined
	How Scaling is Determined
	How Scaling is Determined
	Tokens
	Fixed-Point Storage Containers
	Other Storage Containers
	Data Type Registration Functions
	Storage Container Information Functions
	Signal Data Type Information Functions
	Signal Scaling Information Functions
	Data Type Conversion Functions
	Overflow Handling Tokens
	Rounding Method Tokens
	Fixed-Point Storage Containers
	Other Storage Containers

